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Résumé. On présente les résultats d’estimation adaptative d’une fonction multidi-
mensionnelle sous les hypothèses structurelles. Dans un premier temps, on suppose que la
fonction à estimer possède la structure ≪ single-index ≫ . On propose une procédure s’ap-
puyant sur l’idée de la méthode de Lepski, qui s’adapte simultanément à l’indice inconnu
ainsi qu’à la régularité de la fonction de lien. Pour des pertes ponctuelles on montre la
borne supérieure du risque maximal au cas où la fonction de lien appartient à l’échelle des
espaces de Hölder. D’après la borne inférieure obtenue pour le risque minimax l’estima-
teur construit est un estimateur adaptatif optimal sur l’ensemble de classes considérées.
Ensuit, on parle du modèle de ≪ multi-index ≫ anisotrope pour lequel on présente une
borne inférieure pour le risque minimax sur l’échelle d’espaces de Hölder anisotropes.

Mots-clés. Estimation adaptative, Borne inférieure, Vitesse minimax, Modèle de single-
index, multi-index, Adaptation structurelle.

Abstract. New results about adaptive estimating a multivariate function under struc-
tural constraints are presented. First, one supposes that the function to be estimated
possesses the structure “single-index”. A procedure developing the idea of Lepski’s me-
thod, that adapts simultaneously to the unknown index vector and the regularity of the
link function is proposed. For pointwise losses an upper bound for the maximal risk when
the link function belongs to a collection of the Hölder classes is obtained. The lower bound
on the minimax risk demonstrates that the proposed estimator is rate optimal adaptive
over the considered classes of functions. Next, one discusses the anisotropic multi-index
model for which lower bounds on the minimax risk over the classes of structured aniso-
tropic functions are provided.

Keywords. Adaptive estimation, Lower bounds, Minimax rate, Multi-index model,
Single-index, Structural adaptation.

Introduction. Consider a function F : Rd → R which has the single-index (ridge)
structure : there exist a link function f : R → R and an index vector θ ∈ Sd−1 such that

F (x) = f(θ⊤x). (1)
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In statistical modeling this type of constraint (single-index model) appears in semipa-
rametric estimation [see, for instance, Horowitz (1998)] as a natural relaxation of the
generalized linear models [see McCullagh and Nelder (1989)] and implies that both the
link function and the index vector are unknown.

During the last two decades, numerous techniques for estimating in the single-index
model have been advanced. Among them : M-estimation [see Delecroix and Hristache
(1999), Delecroix et al. (2006), Xia and Li (1999)] ; the so-called “direct”, average deriva-
tive (gradient) based, methods [see Härdle and Stoker (1989), Hristache et al. (2001a,b)] ;
iterative methods, see Xia and Härdle (2006) among others. This list is far from being
complete and just gives an overview of research directions. Roughly speaking, the existing
methodologies essentially consist of two steps : first, one estimates the index θ , possi-
bly with the use of some preliminary nonparametric estimator of f , as for instance in
M-estimation ; second, one uses a plug-in estimator to obtain the final estimator of F .

There are at least two issues related : the calibration of the initial value of θ in the
iterative methods and the selection of the smoothing parameters (bandwidths or cut-off
indices) related to the nonparametric estimating the link function, e.g. to its unknown
regularity. Obviously, a suboptimal choice may dramatically affect the overall estimation
quality so it is one of central points in semiparametric modeling [see the discussion in Car-
roll et al. (1997) and Xia and Härdle (2006)]. Moreover, for example, in M-estimation one
has to choose a bandwidth twice, for a pilot nonparametric estimator (like the Nadaraya-
Watson estimator) of f when estimating θ by θ̂ maximizing the corresponding criterion
and the next time in order to build a final estimator of F . As pointed out in Delecroix
et al. (2006), the bandwidth optimal for estimating θ is not necessarily even satisfactory
for the use in the final estimator. Therefore, some adaptive to the unknown direction of
θ , selection of the smoothing parameters is strongly desirable.

Yet another aspect of the problem. To the best of our knowledge, the overwhelming
majority of the methods require the link function f to be k -times differentiable, see
Delecroix et al. (2006) for the range of the values of k .

Estimation in the single-index regression. Consider a regression model :

Yi = F (Xi) + εi, i = 1, . . . , n, (2)

where Xi are independent random vectors in Rd with common density g w.r.t. the
Lebesgue measure. The noise {εi}n

i=1 are i.i.d. centered symmetric random variables sa-
tisfying with Ω ∈]0, 1] and ω > 0 the tail condition

∫∞
x p(y)dy ≤ Υ exp{−Ωxω}∀x ≥ 0 .

The sequences {εi}n
i=1 and {Xi}n

i=1 are assumed to be independent.
To judge the quality of estimation we use the “pointwise” risk defined as follows :

R(n)
r,t (F̂ , F ) =

(
EF |F̂ (t) − F (t)|r

)1/r

, t ∈ [−1/2, 1/2]d.

Here F̂ (·) is an {(Xi, Yi)}n
i=1 -measurable function and EF denotes the mathematical

expectation with respect to PF , the joint distribution of the sequence {(Xi, Yi)}n
i=1 .
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We will present an adaptive procedure that develops the idea of pointwise adaptation
introduced in Lepski (1990) and Kerkyacharian et al. (2001). Due to the lack of space we
provide here only some of obtained results, see Lepski and Serdyukova (2014) for more
details. Particularly, here we describe the estimation procedure and the results on the
adaptive rate of convergence over a collection of classes of functions possessing the single
index structure defined by

Fd(β, L) def=
{
F : Rd → R | F (x) = f

(
θ⊤x

)
, f ∈ H(β, L), θ ∈ Sd−1

}
, (3)

where H(β, L) , β > 0 , L > 0 , denotes a standard Hölder class of univariate functions.
In what follows we assume that the design density g is bounded away from zero on some
compact larger than the estimation interval. In addition, we suppose that the link function
possesses some minimal smoothness, that is that f is uniformly bounded and continuous.
However, this information is not required for the estimation procedure and appears only
in proofs of the theoretical results. On the other hand, all the results are correct, if f is
discontinuous, but its uniform upper bound is available.

Kernel estimators. Let K : R → R be a function satisfying the following assumption.
Assumption 1. (1) supp(K) ⊆ [−1/2, 1/2],

∫
K = 1, K is symmetric ;

(2) there exists Q > 0 such that
∣∣∣K(u) − K(v)

∣∣∣ ≤ Q|u− v|, ∀u, v ∈ R .

Let d = 2 . For any (θ, h) ∈ S1 × [hmin, 1], define the matrix

E(θ,h) =
(
h−1θ1 h−1θ2
−θ2 θ1

)
, det

(
E(θ,h)

)
= h−1,

and consider kernel estimators with K(u, v) = K(u)K(v) so that

F̂(θ,h)(·) = det
(
E(θ,h)

)
n−1

n∑
i=1

YiK
(
E(θ,h)(Xi − ·)

)
g(Xi)−1.

For any θ, ν ∈ S1 and any h ∈ [hmin, 1], define

E(θ,h)(ν,h) =

 (θ1+ν1)
2h(1+|ν⊤θ|)

(θ2+ν2)
2h(1+|ν⊤θ|)

− (θ2+ν2)
2(1+|ν⊤θ|)

(θ1+ν1)
2(1+|ν⊤θ|)

 ,
where

E(θ,h)(ν,h) =

 E(θ,h)(ν,h), ν⊤θ ≥ 0,
E(−θ,h)(ν,h), ν⊤θ < 0;

1
4h

≤ det
(
E(θ,h)(ν,h)

)
≤ 1

2h
.

A kernel estimator associated with the matrix E(θ,h)(ν,h) is defined by

F̂(θ,h)(ν,h)(·) = det
(
E(θ,h)(ν,h)

)
n−1

n∑
i=1

YiK(E(θ,h)(ν,h)(Xi − ·)
)
g(Xi)−1.
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Procedure. Define TH(η) = 2
[
∥K∥2

∞

√
ln(n) + F̂∞C1(n) + C2(n)

]
(ηn)−1/2, η ∈ (0, 1] ,

where F̂∞ = 2 supv∈[−5/2,5/2]2
∣∣∣F̂ (v)

∣∣∣ + 2C5(n) and F̂ (v) is an auxiliary kernel estimator
allowing estimating without knowledge of the uniform upper bound on the regression
function. The quantities C1(n), C2(n) and C5(n) are given in the paper.

Set Hn = {hk = 2−k, k ∈ N0} ∩ [2−1hmin, 1] and let for any θ ∈ S1 and h ∈ Hn

R
(1)
t (θ, h) = sup

η∈Hn: η≤h
[sup
ν∈S1

|F̂(θ,η)(ν,η)(t) − F̂(ν,η)(t)| − TH(η)]+;

R
(2)
t (h) = sup

η∈Hn: η≤h
[sup
θ∈S1

|F̂(θ,h)(t) − F̂(θ,η)(t)| − TH(η)]+.

Subsequently, define (θ̂, ĥ) as a solution of the following minimization problem :

R
(1)
t (θ̂, ĥ) +R

(2)
t (ĥ) + TH(ĥ) = inf

(θ,h)∈S1×Hn

[R(1)
t (θ, h) +R

(2)
t (h) + TH(h)].

Then our final estimator is F̂ (t) = F̂(θ̂,̂h)(t) .

Theorem 1. Let b > 0 be fixed ; and let the kernel K additionally satisfy
∫
zjK(z)dz =

0, ∀j = 1, . . . , ⌊b⌋ . Then, for any β ≤ b, L > 0, r ≥ 1 and t ∈ [−1/2, 1/2]2, we have

sup
F ∈F2(β,L)

R(n)
r,t

(
F̂(θ̂,̂h), F

)
≤ κ1ψn(β, L),

where ψn(β, L) = L1/(2β+1) [n−1 ln(n)]β/(2β+1) and κ1 is independent of n.

Under additional assumptions on the densities of the noise and design we have the
following lower bound result.

Theorem 2. For any t ∈ [−1/2, 1/2]d , d ≥ 2 , β, L > 0 , and any n large enough,

inf
F̃

sup
F ∈Fd(β,L)

R(n)
r,t

(
F̃ , F

)
≥ κ2ψn(β, L),

where the infimum is over all possible estimators. Here κ2 is a numerical constant inde-
pendent of n and L, and ψn(β, L) is defined in Theorem 1.

We see that the logarithmic term appearing in the lower bound is a sort of “payment”
for the complicated structure but not for the pointwise adaptation. A natural question is :
If we consider more involved structured functions, should we “pay” only the ln ? In the
second part of the present note we introduce a class of anisotropic multi-index functions
and give the best obtainable rate of convergence in estimating of the such functions.
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Estimation in the multi-index model. Let Dl
jg denote the l th order partial deri-

vative of g : Rm → R with respect to the variable zj ; and let ⌊βk⌋ be the largest integer
strictly less than βk .
Definition 1. Let β = (β1, . . . , βm) , βk > 0, k = 1, . . . ,m and L > 0 . A function
g : Rm → R belongs to the anisotropic Hölder class Hm(β, L) if g has continuous partial
derivatives of all orders l ≤ ⌊βk⌋ , k = 1, . . . ,m , and for all k = 1, . . . ,m

∥Dl
kf∥∞ ≤ L ∀l ≤ ⌊βk⌋∣∣∣D⌊βk⌋
k g(z1, . . . , zk−1, zk + τ, zk+1 . . . , zm) −D

⌊βk⌋
k g(z1, . . . , zk, . . . , zm)

∣∣∣ ≤ Lτβk−⌊βk⌋

∀z ∈ Rm, τ ∈ R.

Let θk ∈ Sd−1, k = 1, . . . ,m,m ≤ d , be linearly independent unit-length vectors. Define
the class of anisotropic multi-index functions as follows :

Fm,d(β, L) def=
{
F : Rd → R

∣∣∣ F (x) = f
(
θ⊤

1 x, . . . , θ
⊤
mx
)
, θk ∈ Sd−1, f ∈ Hm(β, L),m ≤ d

}
.

When β = (β, . . . , β) , we will write Fm,d(β, L) (the isotropic case).

Let md =
{
d/2, if d is even,
⌊d/2⌋, if d is odd, and let I(d) =

{
1, if d is odd and m > md ,
0, otherwise.

It is interesting that in the accordance with Theorem 2 the best obtainable rate depends
on whether m ≤ md or not. In order to formulate our lower bound result in a unified
way we need the following
Assumption 2. Let d ≥ m > md +I(d) . Suppose that there exist md directions in which
the corresponding harmonic mean of smoothness indexes strictly dominates : ∑md

(k)=1 β
−1
(k) >∑m

(k)=md+1+I(d) β
−1
(k) , where (k) ∈ {1, . . . ,m} are the permutated indexes from Definition 1.

Note that the number of terms on the right-hand side of the inequality is at most md

with the equality only if m = d . Therefore, in the isotropic case Assumption 2 is trivially
fulfilled for any m < d and fails for m = d . Consequently, the result of the theorem
below is not applicable if m = d and the function is isotropic. It is not surprising because
the isotropic case with m = d can be reduced to estimating of a d -variate function with
no structure constraint and the minimax rate in this case is n−β/(2β+d) . On the contrary,
if the anisotropy presents, Assumption 2 can be viewed as an intolerance level of the
function to the rotation of the coordinate axes.

Denote by Fanis
m,d(β, L) = Fm,d(β, L)\Fm,d(β, L) the class of multi-index functions with

purely anisotropic link functions. Under the conditions of the preceding theorem we have
Theorem 3. For any β = (β1, . . . , βm) , βk > 0, k = 1, . . . ,m , L > 0 , r ≥ 1 ,
t ∈ [−1/2, 1/2]d , d ≥ 2 , and any n sufficiently large

(1) in the isotropic case if m < d ,

inf
F̃

sup
F ∈Fm,d(β,L)

R(n)
r,t

(
F̃ , F

)
≥ κLm/(2β+m)

[
n−1 ln(n)

]β/(2β+m)
;
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(2) in the anisotropic case if either m ≤ md or d ≥ m > md + I(d) and Assumption
2 holds,

inf
F̃

sup
F ∈Fanis

m,d
(β,L)

R(n)
r,t

(
F̃ , F

)
≥ κL1/(2γ+1)

[
n−1 ln(n)

]γ/(2γ+1)
, γ−1 =

m∑
k=1

β−1
k ,

where infimum is taken over all estimators and κ is a constant independent of n and L.
It is worth mentioning that all the obtained rates of convergence agree with the pro-

minent Stone’s dimensionality reduction principle [see Stone (1985)], particularly, in the
isotropic case βk = β ∀k we observe in the rate the “effective dimension” m .
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les modèles à direction révélatrice unique. Bull. Belg. Math. Soc. Simon Stevin 6 :2
161–185.

Delecroix, M. Hristache, M. and Patilea, V. (2006). On semiparametric M-
estimation in single-index regression. J. Statist. Plann. Inference 136 :3 730–769.
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