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Résumé. Les processus de comptage souvent notés N = (Nt)t∈R+ sont utilisés dans de
nombreuses applications en biostatistique, notamment dans l’étude des maladies chroniques.
Dans le cadre de maladies respiratoires il est naturel de supposer que le nombre de consul-
tations d’un patient suit un tel processus dont l’intensité dépend de covariables environ-
nementales. Les processus de Cox (ou processus de Poisson doublement stochastiques)
permettent de modéliser de telles situations. L’intensité aléatoire s’écrit alors sous la
forme λ(t) = θ(t, Zt) où θ est une fonction déterministe, t ∈ R+ est la variable de temps
et (Zt)t∈R+ est le processus des covariables de dimension d. Lors d’une étude longitudi-
nale sur n patients, on observe (Nk

t , Z
k
t )t∈R+ pour k = 1, . . . , n. On se propose d’estimer

l’intensité du processus sur la base de ces observations et d’étudier les propriétés de
l’estimateur construit.

Mots-clés. Processus de Cox, Estimateur de Nadaraya-Watson

Abstract. Counting processes often written N = (Nt)t∈R+ are used in several applica-
tions of biostatistics, notably for the study of chronic diseases. In the case of respiratory
illness it is natural to suppose that the count of the visits of a patient can be described by
such a process which intensity depends on environmental covariates. Cox processes (also
called doubly stochastic Poisson processes) allows to model such situations. The random
intensity then writes λ(t) = θ(t, Zt) where θ is a non-random function, t ∈ R+ is the time
variable and (Zt)t∈R+ is the d-dimensional covariates process. For a longitudinal study
over n patients, we observe (Nk

t , Z
k
t )t∈R+ for k = 1, . . . , n. The intention is to estimate

the intensity of the process using these observations and to study the properties of this
estimator.
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1 Introduction

A random process N = (Nt)t∈[0,T ] defined until a fixed time (horizon) T > 0 is a counting
process if its trajectories are almost surely (a.s.) right-continuous and piecewise constant,
starting at 0 and if the jump size of N at time t is either 0 or 1 a.s.. It can model
for instance the visits in a hospital. In the case of respiratory illness it is natural to
suppose that the intensity of such a process depends on environmental covariates such as
the pollen concentration of the air or the weather. Cox processes come in handy to take
these covariates into consideration. They are formally defined as follows.

Definition 1 (Cox process). Consider a probability space (Ω,F , P ), carrying a counting
process N as well as a non negative process λ = (λt)t∈[0,T ]. We say that N is a Cox
process with intensity process λ if the relation

E
[
eiu(Nt−Ns)

∣∣FNs ∨ Fλ∞] = eΛs,t(eiu−1)

holds for all s < t, where

Λs,t =

∫ t

s

λudu,

and FN = (FNu )u∈R+ ,Fλ = (Fλu )u∈R+ are the natural filtrations of N and λ.

Roughly speaking, conditionally to the entire λ-trajectory, a Cox process is a Poisson
process with intensity λ. Thus, a Cox process is a generalization of a Poisson process
where the time-dependent intensity λ is itself a stochastic process. The process is named
after the statistician David Cox, who first published the model in 1955 (Cox 1955a,b).

A kernel inference of Cox process data with large arrival rates is proposed in Zhang and
Kou (2010). In some cases we feel the necessity to consider covariates in the model. To
model the arrival process of claims an insurance company must for example take into con-
sideration personal data of its customers or climatic, geographic data. The introduction
of covariates such as the age, the sex or other physiological characteristics of the patients
can also improve the inference for clinical trials problems. We consider a non-parametric
estimation of λ based on i.i.d. observations when it can be written as λ(t) = θ(t, Zt)

where θ is a non-random function, t ∈ R+ is the time variable and Z = (Zt)t∈R+ is a
d-dimensional covariates process.
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2 Model and estimate

2.1 Model and data

We suppose that we observe n independent copies of (N,Z) = (Nt, Zt)t∈R+ on [0, τ ].
These observations are denoted by (N1, Z1), . . . , (Nn, Zn). The jumping times of Nk are
denoted by T k1 , T k2 , . . . Given these informations we propose to construct a kernel based
estimator of θ : R+ × Rd → R.

2.2 Assumptions on the model

We suppose that for all t, Zt has a density fZt and denote φ(t, z) = fZt(z)θ(t, z).

To state our results we make several assumptions on the function θ and the processes N
and Z which are summed up here.

(H1) θ(t, z) and fZt(z) are continuous functions of t and z;

(H2) For all t ∈ R+,∫ t

0

E[θ(u, Zu)θ(v, Zv)|Zt = y]dv + E[θ(u, Zu)|Zt = y]

is a continuous function of (u, y);

(H3) E[θ(u, Zu)|Zt = y] and fZt(y) are twice differentiable in u and y and have bounded
continuous partial derivatives.

Remark 1. A sufficient condition to get assumption (H2) is that θ is a Lipschitz con-
tinuous function and Zt has a Lipschitz continuous density. In a same way, a sufficient
condition to get assumption (H3) is that θ and fZt are twice differentiable and have
Lipschitz continuous partial derivatives and fZt(y) 6= 0.

2.3 Estimation strategy

Suppose that we observe θ(t, Zk
t ) for all k = 0, . . . , n. Then our problem of estimation

can simply be viewed as a regression estimation problem. A usual estimator would then
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be the Nadaraya-Watson estimator

θ̂NW (t, z) =

∑n
k=1 θ(t, Z

k
t )Hη(z − Zk

t )∑n
l=1Hη(z − Z l

t)
,

where H : Rd → R is a kernel, η is a bandwidth and Hη(·) = 1
ηd
H
(
·
η

)
.

As we do not observe θ(t, Zk
t ), we suggest to estimate the function θ(·, Zk

t ) using another
kernel K : R → R and another bandwidth h. This gives the estimator we study in this
presentation

θ̂h,η(t, z) =

∑n
k=1

∑Nk
t

i=1Kh(t− T ki )Hη(z − Zk
t )∑n

l=1Hη(z − Z l
t)

.

3 Main results

The following usual assumptions are made on the two kernels.

(H4) suppK = [0, 1], K ∈ L3(R),
∫
K = 1 and

∫
uK(u)du = 0.

(H5) suppH = [−1, 1]d, H ∈ L3([−1, 1]d),
∫
H = 1 and

∫
uH(u)du = 0 where the

multiplication is coordinate-wise.

A study of the properties of our estimator is related below.

3.1 Mean square error

For fixed t ≤ τ denote ψ(u, y) = fZt(y)E[θ(u, Zu)|Zt = y].

Under the hypothesis introduced before and if fZt(z) > 0, h→ 0, η → 0 and nhηd → +∞
then the mean square error defined by

MSE(t, z) =
(
Eθ̂h,η(t, z)− θ(t, z)

)2

+ Var θ̂h,η(t, z),

varies as
η4 + h2η2 + hη3 +

1

nhηd
,

when n→ +∞.

Its minimization over h and η leads to h and η of the same order n−
1

5+d . We can remark
that we get the usual convergence rate for the kernel estimation of the regression function
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with a covariate vector of dimension d+ 1. The fact that we get h∗ = η∗ comes from the
assumptions we make on the kernels which are quite similar. We should be able to get a
different result by changing these assumptions and adapt the proof consequently.

3.2 Consistency and convergence in distribution

It is straightforward that our estimator is biased. We can nevertheless show that it is
consistent and asymptotically normal.

Theorem 1. Assume that (H1)–(H6) are satisfied.
If fZt(z) > 0, h→ 0, η → 0, nhηd → +∞ then

θ̂h,η(t, z)
P→ θ(t, z)

Theorem 2. Assume that (H1)–(H6) are satisfied.
If nh3 → 0, nhηd(hη + η2)2 → 0 and nhηd → +∞ then

(nhηd)1/2 θ̂h,η(t, z)− θ(t, z)[
v̂h,η(t, z)

∫
K2H2/f̂ 2

η (z)
]1/2

D→ N (0, 1),

where v̂h,η(t, z) = φ̂h,η(t, z)
(∫ t

0
E[θ(v, Zv)|Zt = z]dv + 1

)
.

Remark 2. Remark that the assumption nhηd(hη + η2)2 → 0 writes nhd+1+4 for h = η

which is the exact assumption of the usual result for the kernel estimator of the regression.
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