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Résumé. Les modèles de régression prenant en compte une proportion des indi-
vidus avec un temps de vie infini sont souvent utilisés en analyse de survie, fiabilité ou
économétrie. Ces modèles, qu’on appellera modèles de cure (cure models en anglais),
sont utiles pour les situations où pour certaines entités d’observations la durée est très
longue ou l’évènement étudié n’est jamais observé. Dans certaines études médicales où
les patients sont gardés sous surveillance pour remarquer une éventuelle rechute suite à
une maladie, la rechute n’a pas lieu et ces patients sont considérés comme guéris. Dans
l’économie du travail, on étudie souvent le retour sur le marché de travail des certaines
catégories de travailleurs, par exemple le retour des femmes après un arrêt pour cause
de maternité. Il est bien connu qu’une proportion de travailleurs ne retourne plus sur le
marché de travail. Dans de telles situations, une question importante est l’estimation de
la probabilité conditionnelle d’un temps de vie infini, sachant les variables explicatives.
En général, la tâche du statisticien est rendue plus difficile par la présence d’une censure
à droite. Par exemple, la surveillance est arrête avant la rechute ou le travailleur sort du
marché de travail pour raison d’émigration. Plusieurs types de modèles de cure ont été
proposés dans la littérature, le plus souvent la probabilité conditionnelle d’un temps de
vie infini est modélisée par une régression logistique. Dans ce travail on pose la question
de test de l’adéquation d’une modélisation choisie, logistique ou autre. La difficulté réside
dans le fait que pour une observation censurée on ne saura pas préciser s’il elle correspond
à un temps de vie fini ou infini. A notre connaissance, aucune solution n’a été proposée
pour l’instant. Nous introduisons un test d’adéquation non paramétrique basé sur un
lissage à noyau. Ce test est proposé sous des hypothèses minimales d’identification et de
conditions techniques habituelles en analyse de survie. Les valeurs critiques asymptotiques
du test sont données par la loi normale standard.

Mots-clés. analyse de survie, test d’adéquation en régression, lissage par noyau,
U−statistiques

Abstract. Cure regression models are a special topic in lifetime analysis. Such
models are designed to take into account situations where a proportion of subjects will
never experience the event under study. In such a case the lifetime is considered infinite.
For instance, medical studies could reveal a proportion of patients for whom the disease
under surveillance will never recur, and these patients could be considered as cured. A
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well studied topic in Labor Economics is the time to get a new job after a permanent
layoff. It is commonly accepted that a proportion of the labor force will withdraw and
never get a new job. The crucial issue in cure models is to estimate the conditional
probability of an infinite lifetime. In most of the applications the analysis is made more
difficult by the presence of a finite random right censorship. Several cure regression models
have been considered in the literature and most of them consider a logistic regression for
the conditional probability of an infinite lifetime. To our best knowledge, no goodness-
of-fit procedure has been proposed yet. The difficulty comes from the fact that it is
impossible to know whether a censored observation has a finite or infinite lifetime. In this
contribution we propose a kernel smoothing based model check procedure that is able to
detect general (nonparametric) alternatives. The assumptions on the lifetime of interest
and the censorship are very general and the critical values are given by a standard normal
distribution.

Keywords. cure regression models, goodness-of-fit, kernel-smoothing, U−statistics

1 Introduction

Cure models are a special topic in survival analysis model designed to model situations
where there exists a proportion of subjects who will never experience the event. In this
case the time to event is considered infinite. In many applications, it is reasonable to admit
that a certain event under study will never occur. For instance, medical studies could
reveal a proportion of patients for whom the disease under surveillance will never recur,
and these patients could be considered as cured. There is large biostatistical literature
that considered this type of model; see for instance Tsodikov, Ibrahim & Yakovlev (2003),
Zheng, Yin & Ibrahim (2006) and the references therein. The same models appears in
economics and econometrics under the name of split-population models; see Schmidt and
Witte (1989).

A crucial aspect in cure models is to estimate the conditional probability of an infinite
lifetime. In general the task is made more difficult by the presence of a finite random
right censorship. Several cure regression models have been considered in the literature and
most of them consider a logistic regression for the conditional probability of an infinite
lifetime. It seems that no goodness-of-fit procedure has been proposed yet. The difficulty
comes from the fact that it is impossible to know whether a censored observation has
a finite or infinite lifetime. In this contribution we propose a kernel smoothing based
model check procedure that is able to detect general (nonparametric) alternatives. The
procedure is based on the explicit representations of the conditional probability of being
cured as functions of the law of the observations; see Patilea & Van Keilegom (2014).
These representations are obtained under usual conditional independence assumptions
that are required for the identification of the law of the lifetime of interest.
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2 A general framework for cure models

Let T denote the lifetime (or time to event) of interest that takes values in [0,∞]. A cured
observation corresponds to the event {T = ∞}, such that in the following this event is
allowed to have a positive probability.

Consider the situation where one observes independent copies of Y , δ and X where
Y is a nonnegative real-valued random variable, δ is an indicator variable and X is a
d−dimension covariate vector with support X . The indicator variable reveals whether Y
is precisely the lifetime of interest, or Y is only a random quantity smaller than T . In
other words δ = 1 if Y = T and δ = 0 if Y < T.

The observations are characterized by the conditional sub-probabilities

H1([0, t] | x) = P(Y ≤ t, δ = 1 | X = x)

H0([0, t] | x) = P(Y ≤ t, δ = 0 | X = x), 0 ≤ t < ∞, x ∈ X .

Then H([0, t] | x) = P(Y ≤ t | X = x) = H0([0, t] | x) + H1([0, t] | x). Since we
assume that Y is finite, we have H([0,∞) | x) = 1, ∀x ∈ X . For j ∈ {0, 1} and
x ∈ X , let τHj

(x) = sup{t : Hj([t,∞) | x) > 0} denote right extreme of the support of
the conditional sub-probability Hj. Let us define τH(x) is a similar way and note that
τH(x) = max{τH0(x), τH1(x)}.

The usual way to model this situation in order to identify and estimate the conditional
law T is to consider that there exists a nonnegative random variable C, the right-censoring
time, and

Y = T ∧ C, δ = 1{T ≤ C}.
Here and in the following 1{} denotes an indicator function. For 0 ≤ t ≤ ∞, let us define
the conditional probabilities

FC([0, t] | X) = P(C ≤ t | X) and FT ([0, t] | x) = P(T ≤ t | X),

and let ΛC(· | X) and ΛT (· | X) be the corresponding conditional cumulative hazard
measures.

Some identification assumptions are required to be able to identify the conditional law
of T from the observations. Let us assume that

C ⊥ T | X and P(C < ∞) = 1. (1)

For the sake of simplicity, let us consider also the condition

P(T = C) = 0 (2)

Let us point out that for any x the support of ΛT (dt | x) and FT (· | x) (resp. ΛC(dt | x)
and FC(· | x)) coincides with the support of H1(dt | x) (resp. H0(dt | x)). Moreover, if
τH1(x) < ∞,

P(T > τH1(x) | x) =
∏

t∈(0,τH1
(x)]

{1− ΛT (dt | x)},
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but there is no way to identify the conditional distribution of T beyond τH1(x). Therefore,
we will impose P(T > τH1(X) | X) = P(T = ∞ | X). Here and in the following,

∏
t

denotes the product integral. Finally, we will also assume that H0(· | x) and H1(· | x) are
such that

P(C = ∞ | X) =
∏

t∈(0,∞)

{1− ΛC(dt | X)} = 0, a.s. (3)

Let us point out that this condition is satisfied only if τH1(X) ≤ τH0(X) ≤ ∞, a.s. Finally,
note that in the case without covariates, Hj([0, t] | X) should replaced by Hj([0, t]) =
P(Y ≤ t, δ = j), j = 0, 1, in all formulae above.

3 The two-component mixture cure model

Let B be an indicator function for the event T is not cured, that is

B = 1{T is not cured} = 1{T < ∞}.

Define the conditional cumulative hazard measure for the finite values of the lifetime of
interest

ΛT (dt | X,B = 1) =
FT (dt | X,B = 1)

FT ([t,∞) | X,B = 1)

Patilea & Van Keilegom (2014) showed that

ΛT (dt | X,B = 1) =
H1(dt | X)

H([t,∞) | X)− P(B = 0 | X)FC([t,∞) | X)
. (1)

Let us note that FC(· | x) can be written as a transformation of H0(· | x) and H1(· | x).
Such a representation of FC(· | x) plugged into equation (1), allows to express ΛT (· |
x,B = 1), and thus F

(1)
T (· | x) the associated conditional distribution function, as maps

of P(B = 0 | x) and the measures H0(· | x) and H1(· | x).
Let

ϕ(x; β) = P(B = 1 | X = x),

where ϕ(·; ·) is a given function. A typical choice that could be found in the literature is

ϕ(x; β) =
exp(a+ x⊤b)

1 + exp(a+ x⊤b)

where β = (a, b⊤)⊤ with a ∈ R and b ∈ Rd. For identification purposes we impose the
following mild condition: there exists B ⊂ X such that

ϕ(X; β)1{X ∈ B} = ϕ(X; β̃)1{X ∈ B}, almost surely ⇒ β = β̃.
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A set B ⊂ X will be helpful to trim the observations in regions of low density of X. Next,
let β0 such that

P(B = 1 | x) = ϕ(x; β0).

Finally, for a fixed value of the parameter β, and 0 ≤ t < ∞, x ∈ X , let

F
(1)
T,β((t,∞) | x) =

∏
0<s≤t

{
1− H1(ds | x)

H([s,∞) | x)− [1− ϕ(x, β)]FC([s,∞) | x)

}
.

4 Cure regression models check

Let (Yi, δi, Xi), 1 ≤ i ≤ n, an independent sample from (Y, δ,X). Consider τ > 0 such
that τ < τH(x) for all x ∈ B. Let

Ui(y,Xi; β) =
δi

FC([y,∞) | Xi)

{
1{Ti < y} − ϕ(Xi; β)F

(1)
T,β([0, y] | Xi)

}
.

Under our identification conditions, and if the cure regression model is correct,

E[Ui(y,Xi; β0) | Xi] = 0 a.s., ∀y ∈ [0, τ ].

Let Ûi(y,Xi; β) be a nonparametric estimation of Ui(y,Xi; β) obtained from a nonpara-

metric estimation of H0 and H1. Let β̂ an estimator of β0; see Patilea & Van Keilegom
(2014). Consider the statistic

Tn =
1

n(n− 1)hd

∑
1≤i̸=j≤n

⟨
Ûi(·, Xi; β̂), Ûj(·, Xj; β̂)

⟩
Kij

where ⟨
Ûi(·, Xi; β̂), Ûj(·, Xj; β̂)

⟩
=

∫ 1

0

Ûi(sτ,Xi; β̂)Ûj(sτ,Xj; β̂)ds

and

Kij = K

(
Xi −Xj

h

)
1{Xi, Xj ∈ B},

with h a bandwidth.
We show that under suitable technical conditions, for some random sequence µn and

some positive value σ2, the quantity nhd/2(Tn−µn) converges in law to a N(0, σ2) variable
provided the cure regression ϕ(·; β) is correctly specified. The bias correction µn and the
variance σ2 have to be estimated nonparametrically, following the ideas of Lopez & Patilea
(2013). Eventually, a test statistic with standard normal asymptotic critical values is
derived.
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