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Résumé. Dans cette étude, nous utilisons des modèles géostatistiques pour la pré-
diction spatiale d'une variable d'intérêt observée en peu de points, à l'aide d'une variable
auxiliaire observée en un nombre très élevé de points, structurés en ligne, ce qui est souvent
le cas dans le domaine de l'agriculture. Etant donné que les deux variables ne sont pas
mesurées aux même points, la procédure de prédiction nécessite une étape d'interpolation
spatiale de la variable auxiliaire et une étape de régression spatiale de la variable d'intérêt.
Lors de la première étape, les données étant hétérogènes sur la surface étudiée, une anal-
yse locale a été utilisée. Pour traiter la structure en ligne de la variable auxiliaire, nous
avons eu recours à un algorithme "one-way Median Polish" qui extrait "l'e�et colonne".
En�n nous avons e�ectué un krigeage ordinaire sur les résidus obtenus. Pour la deuxième
étape, nous avons prédit la variable d'intérêt en utilisant modèles de regression et un
modèle géostatistique tel que le krigeage universel avec dérive externe. Nous discutons
l'intérêt de ces modèles et choisissons celui qui donne la meilleure prédiction en comparant
leurs performances à l'aide de validations croisées.
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Abstract. In this study, we use geostatistical models for the spatial prediction of a
target variable observed at only a few location points. To compensate, we introduce an
auxiliary variable observed at a very great number of points, distributed in lines, which is
common in the agricultural domain. As the two variables were not measured at exactly
the same points, a prediction procedure was needed. This was composed of two steps:
spatial interpolation of the auxiliary variable followed by spatial regression of the target
variable on the auxiliary variable. At the �rst step, local analysis was performed because
the auxiliary variable data were heterogeneous in the area under study. A one-way Median
Polish algorithm was then used to extract the "column e�ect" from the array data, so
that ordinary kriging could be executed on the residuals. We then predicted the target
variable at the second step, using regression models and a speci�c geostatistical model
called universal kriging with external drift. We discussed the interest of these models
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and chose the one that gave the better prediction by comparing their performances using
cross-validation.

Keywords. Geostatistical model, kriging, spatial regression

1 Introduction

In various �elds, many scientists need to predict spatial distributed variables based on
their di�erent samples. However, when the target variable is sparsely measured in a par-
ticular area, the predicting can be very di�cult, not only because there are insu�cient
samples, but also because of the strong spatial heterogeneity. Thus, we must resort to
more abundant and accessible ancillary information to predict a sparse target variable.
Speci�cally, we want to predict a target variable whose measurement is sparse, Z1, at
required locations, using a densely measured auxiliary variable Z2.
In this paper, we use geostatistical methods such as kriging and statistical regression
models. The auxiliary variable we study has a special spatial structure, with its samples
being well aligned. By contrast, the target variable samples were measured between the
lines.
So these two variables are not measured at the same locations. Consequently, the predic-
tion process is composed of two steps. Initially, it is necessary to interpolate the auxiliary
variable at the measured and required prediction locations of the target variable. A
one-way Median Polish method is used here to adapt to the array structure of the Z2

observations given above (Cressie, 1993). The second step is to predict the target variable
at the required unsampled locations, using auxiliary variable values. The usual regression
models and universal kriging model were compared in this step.

2 Framework

Supposing that we have target variable Z1 and the auxillary variable Z2 valued in a
spatial �eld D, their spatial observations can be represented by Z1 = (Z1(s1), ..., Z1(sm))

′,
Z2 = (Z2(sm+1), ..., Z2(sm+n))

′, where {s1, s2, ..., xm+n} ∈ D correspond to their observed
locations respectively, and m << n. They can be considered as partial samplings of
the realisation of random processes Z1(s), Z2(s), s ∈ D. We want to predict the Z1 at
unsampled locations {s1′ , s2′ , ..., sl′} using observations of Z2 .
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3 Methods

3.1 Kriging models

First, ordinary kriging is used to predict Z2 and then universal kriging with external drift,
is used to predict Z1 by Z2.
These two methods are presented here:
For the ordinary kriging, the predictor of variable Z for an unsampled location s0 is the
linear combination of n neighbourhood sampling points,

Z∗(s0) =
n∑

α=1

ωαZ(sα) (1)

To guarantee the consistency of the estimators, the weights have to be constrained to sum
up to one. The weights are calculated using an estimated variogram by minimizing the
estimation variance under the constraint.
Kriging with external drift (KED) is a particular formulation of universal kriging. It
allows the ancillary information to be used to account for the spatial variation of the
target variable Z1 local mean. The auxiliary variable Z2 is chosen for its strong correlation
with the target variable. The auxiliary variable should be measured or estimated at every
location of the target variable and every estimation point. The linear link between Z1

and Z2 is incorporated in Equation (1) which gives:

E[Z∗1(x0)] =
n∑

α=1

ωαE[Z1(xα)] = a0 + b1

n∑
α=1

ωαZ2(xα).

E[Z∗1(x0)] = E(Z(x0)) = a0 + b1Z2(x0)

(2)

This implies that the weights should be consistent with an exact interpolation of s(x)

Z2(x0) =
n∑

α=1

ωαZ2(xα). (3)

The objective function φ to be minimized in this kriging system consists of the esti-
mation variance σ2

E and of two constraints.

φ = σ2
E − µ0(

n∑
ωα=1

−1)− µ1(
n∑

α=1

ωαZ2(xα)− Z2(x0))

The supplementary universality condition, concerning one or several external drift vari-
ables measured exhaustively in the spatial domain is incorporated into the kriging system.
(Goovarest, 1997)
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3.2 Median Polish

To descibe the irregular gridded spatial data (two-way array) in which the grid spacings
do not have to be equal in either the horizonal direction or the vertical direction, Cressie
(1993) speaks of a mean structure obtained by additive decomposition of the row and
column e�ect:

u(si) = a+ rk + cl, si = (xl, yk) (4)

In order to avoid bias and the in�uence of the extreme values, a speci�c approach
called Median Polish, has been proposed to estimate the additive e�ects given above
using Median theory (Cressie, 1993). Median Polish proceeds by repeated extraction of
the row and column medians until convergence, with respect to a stopping criterion chosen
by the investigator. It gives new estimators of a, rk, cl, which we write as ã, r̃k, c̃l, So the
original spatial data can be expressed as :

Z(si) = ã+ r̃k + c̃l +R(si) (5)

where R(si) is the Median-Polish residual which is detrended to allow ordinary kriging to
be carried out:

R̃(s0) =
n∑
i=1

λiR(si) (6)

For s=(x,y)' in the region bounded by lines joining the four nodes, (xl, yk)
′, (xl+1, yk)

′,
(xl, yk+1)

′, (xl+1, yk+1)
′, where xl < xl+1 and yk < yk+1 de�ne the planar interpolant:

ũ(s) ≡ ã+ r̃k + (
y − yk

yk+1 − yk
)(r̃k+1 − r̃k) + c̃l + (

x− xk
xk+1 − xk

)(c̃k+1 − c̃l) (7)

Thus the Median-Polish kriging predictor is :

Z̃(s0) ≡ ũ(s0) + R̃(s0) (8)

4 Prediction procedure

In accordance with the prediction plan mentioned in the introduction, we are now going
to explain the prediction procedure in detail.

4.1 Predict auxiliary variable at target variable sampled and re-

quired un-sampled locations

In this step, we have to interpolate auxiliary variable Z2 at target variable sampled loca-
tions {s1, s2, ..., sm} and at required un-sampled locations {s1′ , s2′ , ..., sl′} using observa-
tions (z2(sm+1), ..., z2(sm+n)).
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Unlike other interpolation models, kriging models have the advantage that they integrate
representation of the average spatial variability by estimating the variogram, and give
us a best linear unbiased estimator. So here we have chosen a kriging model to execute
this step. In order to adapt to heterogeneous spatial structures which often leads to the
non-stationarity of increments and to improve the assessment of Z2, here, a local kriging
with local estimated variogram is applicable, because the number of predicting locations
m is su�ciently small (Walter, 2001).
So for each predict location si, i ∈ 1, ...,m, we choose a neighbourhood Di, and only the
spatial units Z2(sij), sij ∈ Di have been used to estimate Z2(si).
Local analysis can partly reduce non-stationarity on the increments, but it still leaves a
non-stationary part, due to the column e�ect from the array structure.

4.2 One-way Median Polish for array data

We only consider the global e�ect and column e�ect to our data due to the array structure
of the auxiliary variable observations. So the observations of Z2 can be decomposed as:

Z2(si) = a+ cl + ε(si), si = (xl,whatever y) ∈ D. (9)

A simpli�ed one-way Median Polish algorithm gives us the e�ect estimators ã, c̃l. A
variogram analysis and an ordinary kriging can be performed on the residuals ε(s). Then,
we use (7) and (8) to estimate the auxiliary variable value at required locations si′ , i ∈
1, ...,m.

4.3 Spatial estimates of target variable by auxiliary variable

Finally, as we have obtained the estimated values of Z2 at all the required locations, it only
remains to estimate Z1. There are mainly two ways of estimating the target value. One
is to consider only the relationship between target and auxillary variable Z1, Z2 and to
model it using statistical models such as GLM (Generalized linear model) or SLR(Simple
linear regression). The other way is to apply universal kriging with external drift.
The di�erence between these two types of models is that the geostatistical model take the
spatial structure of the target variable's observations into account. Since the measure-
ments are scarce, the geostatistical model might be risky because the variogram estimation
could be too imprecise.
The methods discussed in this paper have been applied to selected data in an agricultural
domain. The results of this study will be given in an oral presentation.
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Figure 1: An example of described sampling structure, with m (the number of Z1 mea-
surements)=14 and n (the number of Z2 measurements)=50000.
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