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Résumé. La réduction de la dimension est une des problématiques majeures de la
régression en grande dimension. Nous avons récemment introduit, dans le cadre de
régression linéaire, une nouvelle approche visant la réduction de la dimension par la
classification des covariables en groupes de mêmes effets. Nous proposons ici une ex-
tension de ce dernier modèle à la régression Probit pour données binaires. Les qualités
de prédiction du modèle proposé sont comparées à la régression logistique pénalisée
en norme L1 (LASSO) et L2 (ridge). Cette comparaison effectuée à la fois sur des don-
nées réelles et simulées, révèle les bonnes qualités prédictives de notre approche.

Mots-clés. Regression Probit, Réduction de la dimension, Echantillonnage de Gibbs,
Classification.

Abstract. Dimension reduction is a major issue in high-dimensional regression
models. We recently introduced the CLusterwise Effect REgression (CLERE) method-
ology [1] in the context of linear regression for variable clustering as a way of reducing
the dimensionality. We propose in this paper, an extension of the CLERE methodol-
ogy to high dimensional Probit regression. The proposed extension was compared to
LASSO and Ridge logistic regressions. This comparison achieved on both simulated
and real data, revealed the good predictive performances of our method.

Keywords. Probit Regression, Dimension reduction, Gibbs sampling, Clustering.

1 Introduction

Binary response data are encountered numerous in scientific fields including econo-
metrics (wealthy households versus poor households) or medical sciences (diseased
versus healthy), as specific examples. The main regression-based approaches to han-
dle these data are the Generalized Linear Models (GLM). In GLMs, the binary response
ci for an individual i (i = 1, . . . , n) is assumed to take values into {0, 1} and to follow a
Bernoulli distribution of probability pi. Probability pi is defined as pi = F(xiβ), where
xi is a vector of p covariates, β the vector of associated regression coefficients and F
some link function mapping R to ]0, 1[. The choice of F is very critical as it influences
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the interpretation and the tractability of the inference. Classical choices for F are the
so-called logit link function, defined as

logit : x 7→ F(x) = σ(x) =
1

1 + e−x ,

and the the probit link function defined as

probit : x 7→ F(x) = Φ(x) =
1√
2π

∫ x

−∞
exp

[
− t2

2

]
dt.

Beyond choosing F, another difficulty arises when the number covariates in the model
exceeds the sample size, i.e. p > n. This difficulty concerns both the hability to inter-
pretate the model and to yield reliable predictions. We recently introduced the CLus-
terwise Effect REgression (CLERE) methodology [1] in the context of linear regression
for variable clustering as a way of reducing the dimensionality. This methodolgy as-
sumes that regression coefficients are independant random variables drawn from a
mixture of Gaussian distributions. Recovering the latent mixture produces a cluster-
ing of the covariates.
This paper presents an extension of the CLERE methodology to handle binary response
data in a high dimensional setting. This extension is considered under the GLM frame-
work using the probit link function.
The present article is organized as follows. In Section 2 the extended model is pre-
sented as well as an algorithm for estimating the model parameters. Section 3 illus-
trates the predictive performances of the model in both simulated and real data. Fi-
nally Section 4 proposes possible improvements for our model.

2 Model definition and parameters estimation

2.1 Model definition

The standard probit regression model is defined by the following equations
ci = 1{yi>0}
yi = β0 + ∑

p
j=1 β jxij + εi

εi
iid∼ N (0, 1)

(1)

where for an individual i, ci is an observed binary response, xij is the value of the j-th
covariate and β j is its associated regression coefficient. To extend the CLERE method-
ology to models such as model (1), we have to additionally assume that{

β j|zj
iid∼ N

(
∑

g
k=1 bkzjk, γ2)

zj =
(
zj1, . . . , zjg

) iid∼M
(
π1, . . . , πg

)
.

(2)
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In model (2), zjk (for k = 1, . . . , g) is the cluster membership indicator that variable j
belongs to group k; and M

(
π1, . . . , πg

)
stands for the multinomial distribution.

We uses subsequently the following notations c = (c1, . . . , cn), y = (y1, . . . , yn), y−i =
(y1, . . . , yi−1, yi+1, . . . , yn), β =

(
β1, . . . , βp

)
, X the n × p matrix which (i, j)-th term

equals xij, Z the p × g matrix which (j, k)-th term equals zjk, Z−j is obtained from
Z by withdrawing its j-th row and θ =

(
β0, b1, . . . , bg, π1, . . . , πg, σ2, γ2) ∈ R(g+1) ×

[0; 1]g ×R2
+.

The model parameter θ is estimated by maximizing the likelihood of the observed
data p(c|X ; θ). This likelihood is obtained by integrating the complete data likelihood
p(c, y, Z, β|X ; θ) over (y, Z, β). Although an analytical integration can only be per-
formed over β, the maximum likelihood estimation is still achievable using the EM
algorithm [2]. An exact EM algorithm is not feasible in this context since the E step
is intractable. In turn, we propose to estimate the model parameters using the SEM
algorithm. This algorithm replaces the E step with the simulation of the unobserved
data (y, Z), using the conditional distribution of the latter given the observed data,
p(y, Z|c, X ; θ). Such simulation cannot be performed straightforwardly. We used
therefore a Gibbs sampler to generate unobserved data. After the simulation step (S
step) comes maximization step (M step) which consists in updating the model parame-
ters with values that maximize the complete data likelihood (integrated over β) given
in Equation (3):

log p (c, y, Z|X; θ) = log p(c|y)− n
2

log (2π)

− 1
2

(y− β01− XZb)′
[
γ2XX′ + Ip

]−1
X′ (y− β01− XZb)

+
p

∑
j=1

g

∑
k=1

zjk log(πk). (3)

2.2 Simulation step by Gibbs sampling

The simulation step consists in sampling (y, Z) from p(y, Z|c, X ; θ). As stated above,
this simulation is performed using a Gibbs sampler. The necessary conditional distri-
butions are briefly detailed in Sections 2.2.1 and 2.2.2.

2.2.1 Sampling from p(y|Z, c, X ; θ)

The distribution (y|Z, c, X ; θ) is a multivariate truncated Gaussian distribution. Sam-
pling from a multivariate truncated Gaussian distribution is known to be difficult.
However, using the conditional distributions p(yi|y−i, Z, c, X ; θ), a Gibbs sampler can
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easily be applied. The latter distributions are univariate truncated Gaussian distribu-
tions.

2.2.2 Sampling from p(Z|y, c, X ; θ)

Sampling the whole matrix Z is challenging too. However, each of its rows follows a
multinomial distribution. We can therefore also apply a Gibbs sampler to sample the
rows using the conditional distributions p(zj|Z−j, y, c, X ; θ).

2.3 Maximization step

The M step consists in maximizing the function θ 7→ log p(y, Z|c, X ; θ). This function
corresponds to the marginal log-likelihood of a linear mixed model, which fixed effect
parameters are β0, b1, . . . , bg and random effect parameters are σ2 and γ2. We then used
the EM algorithm proposed in Searle et al. (1992) [3] to perform that maximization.

3 Numerical experiments

This section presents numerical experiments on simulated and real data. These ex-
periments aim at comparing our extended CLERE- probit model to classical models
for high-dimensional binary regression models. The methods selected for comparison
were the LASSO logistic regression and the ridge logistic regression.

3.1 Simulated data

The comparison is performed in terms of classification error on a simulated validation
set of 500 individuals. The sample size in the training set was equal to 100, while the
number p of covariates 200. All covariates were simulated independently according to
the standard Gaussian distribution. The latent data yi was simulated as follows:

yi
iid∼ N

(
p

∑
j=1

β jxij, 1

)

whith β =
(

β1, . . . , βp
)

is defined as

β = (−1, . . . ,−1︸ ︷︷ ︸
60

, 0, . . . , 0︸ ︷︷ ︸
80

, +1, . . . , +1︸ ︷︷ ︸
60

).

The CLERE-probit model was fitted using 20 different random starting points. We used
for the LASSO logistic regression and the ridge logistic regression the implementation
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proposed in the R package glmnet with their default parameters.

Figure 1 shows the classication errors associated with the three compared meth-
ods. CLERE-probit showed the lowest classication error compared to its competitors
in addition to require a quite low number of parameters.
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Figure 1: Classification errors associated with CLERE-probit, Logistic LASSO and Lo-
gistic Ridge. 50 replications were considered. The median number of parameters for
logistic LASSO, logistic ridge and CLERE-probit was respectively, 14.2±1.3, 200±0.0
and 3±0.1.

3.2 Leukemia dataset

We used in this section the dataset leukemia from the R package spikeslab. This
dataset involves gene expression measured in samples from human acute myeloid
(coded as 0) and acute lymphoblastic leukemias (coded as 1). 3571 expression val-
ues were measured on 72 individuals. We primarily reduced the number of variables
to 1412 by only including variables showing a nominal association with the response
(p-value<0.05). The same three methods were compared using 3-fold cross-validation.
Table 1, summarizes the results of that comparison.
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Averaged classication Error Number of parameters
Datasets Methods (Std. Error) (Std. Error)

leukemia LASSO 0.055 (0.03) 20.0 (1.52)
RIDGE 0.013 (0.01) 1412 (0.00)
CLERE-probit 0.013 (0.01) 3.00 (0.00)

Table 1: Out of sample classication error estimated via 3-fold cross-validation. The
number of parameters reported for CLERE-probit was selected using AIC.

All methods were comparable in terms of classification error. However, it is notewor-
thy that logistic ridge and CLERE-probit showed the lowest classification errors (both
yieled an error equal to 0.013), CLERE-probit being much more parsimonious.

4 Discussion

We presented in this paper an extension of the CLERE methodology for handling bi-
nary response data. This extension was shown to be more challenging than the linear
regression case. The main challenge relates to the simulation of the auxiliary variable
y. This necessary step significantly increases the computational complexity of the in-
ference.

Despite this computational limitation, the extension of CLERE for binary response
data showed very competitive prediction performances compared to known approaches
for dimension reduction, with a highly reduced number of parameters. The numerical
experiments using both simulated and real datasets were really encouraging.

Finally, the extension presented here can be considred as a first step to generalize
the CLERE methodology to multi-class response data and ordinal response data. The
method presented in this paper is implented in R package clere.
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