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Abstract

In this talk, we consider the class of bilinear processes with Markov switching
(MS −BL) that offers remarkably rich dynamics and may be considered as an
alternative to models with constant coefficients non Gaussian data. So, firstly,
some basic issues concerning this class of models including sufficient conditions
ensuring the existence of stationarity (in strict sense) and ergodic solutions are given.
Secondary, we illustrate the fundamental problems linked with MS − BL models,
i.e., parameters estimation by considering a quasi-likelihood (QML) approach. So,
we provide the detail on the asymptotic properties of QML, in particular, we discuss
conditions for its consistency and asymptotic normality for MS −BL.

Résumé

Dans cette communication, nous étudions la classe des modèles bilinéaires à change-
ment de régimes markoviens. Nous donnons des conditions suffisantes de stationnarité
stricte et au second ordre. Une approche par quasi-maximum de vraisemblance est pro-
posée pour estimer les paramètres du modèle et ses propriétés asymptotiques.

Keywords: MS-bilinear processes, Quasi-maximum likelihood, Strong consistency,
Asymptotic normality.

1 Introduction

Markov-switching time series models (MSM) have received recently a growing interest
in macroeconomics because of their ability to adequately describe various observed time
series subjected to change in regime. Flexibility is one of the main advantages of MSM
which become an appealing tool for the modelling of business cycles and continue to gain
popularity especially in financial time series which exhibits structural changes in regime.
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In this talk we concern ourselves with a large class of models, the discrete-time bilinear
model (Xt, t ∈ Z) defined on some probability space (Ω,=, P ) and generalized by the
following stochastic difference equation

Xt = a0 (st) +

p∑
i=1

ai(st)Xt−i + et +

q∑
j=1

p∑
i=j

cij(st)Xt−iet−j (1.1)

denotes by MS−BL(p, 0, p, q). In (1.1), the innovation process (et, t ∈ Z) is supposed to
be defined on the same probability space (Ω,=, P ) with E {et} = 0 and E

{
log+ |et|

}
<

+∞ where for x > 0, log+ x = max(log x, 0). The functions ai(st), bj(st) and cij(st) de-
pend upon an unobservable first order Markov chain (st, t ∈ Z) that controls the dynamics
of Xt and subject to the following assumption:

Assumption 1 The Markov chain (st, t ∈ Z) is irreducible, aperiodic (and hence station-
ary and ergodic), finite state space S = {1, ..., d}, n−step transition probabilities matrix

Pn =
(
p

(n)
ij , (i, j) ∈ S× S

)
where p

(n)
ij = P (st = j|st−n = i) with one-step transition prob-

ability matrix P := (pij, (i, j) ∈ S× S) where pij := p
(1)
ij = P (st = j|st−1 = i) for i, j ∈ S,

and stationary distribution π = (π(1), ..., π(d))′ where π(i) = P (s0 = i), i = 1, ..., d. In
addition, we shall assume that et and {(Xs−1, st) , s ≤ t} are independent.

It is convenient to represent (1.1) in a state-space representation Xt = F ′Zt and

Zt = ΓtZt−1 + η
t
. (1.2)

where Γt = Γ0(st) + etΓ1(st) with Γi(st), i = 0, 1 and F ,Zt, ηt are appropriate matrices

and vectors. For such representation the extended process
(
Z̃t := (Z ′t, st)

′
, t ∈ Z

)
is a

Markov chain on Rs × S.

2 Stationarity of MS −BL processes

Now, since ((st, et) , t ∈ Z) is stationary and ergodic process, then (Γt, t ∈ Z) is also a

stationary and ergodic process and both E
{

log+ ‖Γt‖
}

and E
{

log+
∥∥∥η

t

∥∥∥} are finite.

So, from Bougerol and Picard [1], the unique, causal, bounded in probability, strictly
stationary and ergodic solution of (1.2) is given by almost surely (a.s)

Zt =
∞∑
k=1

{
k−1∏
i=0

Γt−i

}
η
t−k + η

t
(2.1)

whenever the Lyapunov exponent γL (Γ) associated with the sequence of random matrices
(Γt, t ∈ Z) and defined by

γL (Γ) := inf

{
1

n
E log

∥∥∥∥∥
n−1∏
i=0

Γt−i

∥∥∥∥∥ , n ≥ 1

}
a.s
= lim

n→∞

1

n
log

∥∥∥∥∥
n−1∏
i=0

Γt−i

∥∥∥∥∥ (2.2)
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is strictly negative. The second equality in (2.2) can be justified using Kingman’s sub-
additive ergodic theorem and the existence of γL (M) is guaranteed by the fact that
E
{

log+ ‖Γt‖
}
≤ E {‖Γt‖} < +∞. So we have

Theorem 2.1 Consider the MS − BL (p, q, p,Q) process (1.1) with state−space repre-
sentation (1.2) and suppose that γL (Γ) < 0. Then,

1. for all t ∈ Z, the series (2.1) converges absolutely almost surely and the process
(F ′Zt, t ∈ Z) constitutes the unique, strictly stationary, ergodic and causal solution
of (1.1).

2. almost surely, the sequence

(
n∏
i=0

Γt−ix, n ≥ 0

)
converge to the 0 for any x∈ Rr.

Proposition 2.1 Assume that E {e4
t} < +∞ and set Φn(s0) = E

{∥∥∥∥∥ n∏
j=0

Γn−j

∥∥∥∥∥ |s0

}
, then

1. Φn(s0) converges to 0 iff Φn(s0) converges to 0 at an exponential rate as n→ +∞.

2. The MS − SBL (p, 0, p, Q) process has a unique, strictly stationary, ergodic, causal
and bounded in probability solution whose second-order moment exists if

lim
n→+∞

Φn(s0) = 0. (2.3)

3. Under (2.3), the autocovariance matrix Σ(m) = Cov
{
Zt+m, Zt

}
of the process (Zt, t ∈ Z)

decays at a geometric rate.

3 Quasi-likelihood estimation for MS −BL
In this talk, we consider the model (1.1) in which, the innovation process (et, t ∈ Z) is an
i.i.d sequence with zero mean and variance 1, the orders p, q and the regimes number d are
assumed to be known and fixed, the r−unknown parameters, gathered in θ := (θ′1, ..., θ

′
d)
′

belongs to a some Euclidian parameter space Θ where θi =
(
a′i, c

′
i, π
′, p′

i

)′
with vec-

tors coordinate projections ai := (a0 (i) , ..., ap (i))′ , ci := (clk (i) , 1 ≤ k ≤ l ≤ q)′ , p
i

:=

(pij, ..., pid, j 6= i)′. The true parameter is denoted θ0 and for any integers a and b, let Xa:b

(resp. X a:b) denotes the set {Xa, Xa+1 . . . , Xb} (resp. {(Xa, ea) , (Xa+1, ea+1) , . . . , (Xb, eb)})
with possibly a = −∞ in this cases we shall note Xb (resp. X b). The problem of interest
in this talk is the estimation of the parameter vector θ governing Equation (1.1) from an
observed sequence X1:n and unobserved ((st, et) , t ∈ Z), for this purpose, we shall denote
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the density function of observations by gθ (.) and that of innovations et by f (.).. The
quasi-likelihood Ln (θ) that we work with is given by

Ln (θ) =
∑

(x1,...,xn)∈Sn

π (x1) gθx1

(
X1|X 1−p0:0

) n∏
t=2

pxt−1,xtgθxt

(
Xt|X 1−p0:t−1

)
. A quasi-maximum likelihood estimator (QMLE) of θ is defined as any measurable

solution θ̂n of
θ̂n = arg max

θ∈Θ
Ln (θ) . (3.1)

For the asymptotic purpose, it is convenient to approximate the process gθxt

(
Xt|X 1−p0:t−1

)
by its ergodic stationary version gθxt

(
Xt|X t−1

)
so we work with an approximate ver-

sion L̃n (θ), i.e., L̃n (θ) =
∑

(x1,...,xn)∈Sn

π (x1) gθx1
(X1|X 0)

n∏
t=2

pxt−1,xtgθxt

(
Xt|X t−1

)
. Our ap-

proach is benefitted from the papers by [4], [2] and by [3].

3.1 Consistency of QMLE

Define pθ
(
Xt|X 1−p0:t−1

)
(resp. qθ

(
Xt|X t−1

)
) the conditional density ofXt given X 1−p0:t−1(resp.

given X t−1) and p∗θ
(
Xt|X 1−p0:t−1

)
(resp. q∗θ

(
Xt|X t−1

)
) its logarithm and consider the

following regularities conditions.

A1. θ0 ∈ Θ and Θ is a compact subset of Rr

A2. γL (M0) < 0 for all θ ∈ Θ where M0 denotes the sequence (Mt, t ∈ Z) when the
parameters θi are replaced by their true values θ0

i , i = 1, ..., d.

A3. a. For all θ ∈ Θ, almost surely 0 < min
k

{
gθk

(
Xt| X t−1

)}
< max

k

{
gθk

(
Xt| X t−1

)}
<

+∞

b. There exists a neighborhood V (θ) of θ such that Eθ0

{
sup

θ′∈V(θ)

∣∣∣q∗θ′ (Xt| X t−1

)∣∣∣} <

∞ for some δ > 0.

A4. Identifiability Condition: For any θ, θ′ ∈ Θ, if almost surely qθ
(
Xt| X t−1

)
= qθ′

(
Xt| X t−1

)
,

then θ = θ′.

First we show the following general results.

Lemma 3.1 Under A2 and A3, almost surely, uniformly with respect to θ ∈ Θ, lim
n−→∞

1
n

log L̃n (θ) =

lim
n−→∞

1
n

logLn (θ) = Eθ0
{
q∗θ
(
Xt| X t−1

)}
.
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Lemma 3.2 Let Zn (θ) = 1
n

log

(
L̃n (θ)

L̃n (θ0)

)
for all θ ∈ Θ. Then under the conditions

A1-A4, almost surely lim
n−→∞

Zn (θ) ≤ 0 with equality iff θ = θ0.

Lemma 3.3 Under the assumptions A1-A4. For all θ′ 6= θ0, there exists a neighborhood
V (θ′) of θ′such that almost surely lim sup

n→+∞
sup

θ∈Vm(θ′)

Zn (θ) < 0.

Theorem 3.1 For the MS − BL model ((1.1)), let θ̂n be the QMLE sequence over Θ
satisfying (3.1). Then under the conditions A1-A4, θ̂n −→ θ0 a.s as n −→∞.

3.2 Asymptotic normality

In the rest of the communication, we shall assume that the innovation process has

normal distribution, i.e., f(x) = 1√
2π

exp
{
−x2

2

}
, x ∈ R. On the other hand, since

given a bath st = xt, the Jacobean of the transformation from Xt to et is unity, then
gθxt

(
Xt|X 1−p0:t−1

)
= f

(
et
(
θxt

)
|X 1−p0:t−1

)
where (et (θ) , t ∈ Z) be the strict stationary

process determined recursively in t as the solution of et (θ) = Xt−a0 (st)−
p∑
i=1

ai(st)Xt−i−
q∑
j=1

p∑
i=j

cij(st)Xt−iet−j (θ), so the likelihood function of X1:n is the same as joint density

function of e1:n (θ) summed over all possible path of the Markov chain and Ln (θ) is now
a convex combination of n−multivariate Gaussian densities, i.e.,

Ln (θ) =
∑

(x1,...,xn)∈Sn

π (x1)
n∏
t=2

pxt−1,xt

n∏
t=1

f
(
et+p0−1

(
θxt

))
.

Remark 3.1 The existence and the uniqueness of the process (et (θ) , t ∈ Z) is ensured
by the invertibility of the model (1.1) in the sense that et ∈ σ ((Xk, sk) , k ≤ t). Hence,
the model (1.1) is invertible if the Lyapunov exponent γL (C) associated with the sequence

C = (Ct, t ∈ Z) where Ct = [βj (t) δ1(i) + δi(j + 1)]i,j=1,...,q with βj (t) =
p∑
i=j

cij(st)Xt−i is

such that γL (C) < 0 provided that there already exists a strictly stationary and ergodic
process (Xt, t ∈ Z) satisfying the Equation (1.1).

To formulate the asymptotic normality of the parameter estimate, we have to introduce
the gradient ∇θ and Hessian ∇2

θ operators with respect to parameter vector θ and we
added the following assumptions

A5. θ0 ∈
o

Θ where
o

Θ is the interior of Θ.
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A6. γL (C0) < 0 for all θ ∈ Θ where C0 denotes the sequence (Ct, t ∈ Z) when the
parameters θi are replaced by their true values θ0

i , i = 1, ..., d.

A7. E {X4
t } < +∞

A8. E {e4
t} < +∞.

Lemma 3.4 Under the conditions A1-A8, we have 1. The function θ −→ q∗θ
(
Xt| X t−1

)
is of class C(2) on

o

Θ, 2. sup
θ∈Θ

∥∥∇θq
∗
θ

(
Xt| X t−1

)∥∥ < ∞, sup
θ∈Θ

∥∥∇2
θq
∗
θ

(
Xt| X t−1

)∥∥ < ∞., 3.

E

{
sup
θ∈Θ

∥∥∇θq
∗
θ

(
Xt|X t−1

)∥∥} <∞, E

{
sup
θ∈Θ

∥∥∇2
θq
∗
θ

(
Xt| X t−1

)∥∥} <∞.

Lemma 3.5 Under the conditions A1-A8, there exist a functions hi : R→ R+, i =
0, 1, 2 satisfying E {hi (Xt)} < +∞, i = 0, 1, 2 such that 1. sup

θ
gθ
(
Xt|X t−1

)
≤ h0 (Xt),

2.
∥∥∇θgθ

(
Xt| X t−1

)∥∥ ≤ h1 (Xt), 3.
∥∥∇2

θgθ
(
Xt| X t−1

)∥∥ ≤ h2 (Xt).

Lemma 3.6 Let In (θ) be the covariance matrix of 1√
n
∇θ logLn (θ) (In (θ0) plays the

role of Fisher information matrix). Then In (θ) = 1
n
Eθ0

{
∂ logLn(θ)

∂θ
∂ logLn(θ)

∂θ′

}
Jn (θ) =

− 1
n
Eθ0

{
∂2 logLn(θ)

∂θ∂θ′

}
= V arθ0

{
∇θ log qθ

(
Xt| X t−1

)}
.

Lemma 3.7 Under the conditions A1-A8., 1. J (θ0) = lim
n→∞

Jn (θ0) and I (θ0) = lim
n→∞

In (θ0)

exists and 2. J (θ0) is a positive definite matrix.

Lemma 3.8 Under A1-A8, almost surely 1
n
∇2
θ logLn (θ) −→ −J (θ0) .

Proposition 3.1 Under conditions A1-A8 we have 1. n−
1
2∇θLn

(
θ̂n

)
 N (0, I (θ0))

and 2.
√
n
(
θ̂n − θ0

)
 N (0,Σ (θ0)) where Σ (θ0) = J−1 (θ0) I (θ0) J−1 (θ0).
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