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Résumé. Dans ce travail, nous donnons une application réelle de la méthode de
dérivée filtrée avec le taux de fausses découvertes (FDqV). La FDqV utilise deux étapes,
la première étape est la dérivée filtrée et la séconde étape utilise le taux de fausses
découvertes pour éliminer les fausses alarmes et récupérer uniquement les vrais instants
de ruptures. La domination de la FDqV par rapport á la dérivée filtrée avec p-value est
clairement établie par le critère de l’erreur quadratique de la moyenne. Ici, nous utilisons
des données fournis par EDF concernant des éolionnes implantés quelques part en France,
nous détectons les instants de ruptures de la vitesse du vent sur une période donnée.

Mots-clés. Series Temporelles, Dérivée Filtrée, Taux de Fausses Découvertes

Abstract. In this work, we give a real application of the method of Filtered Derivative
with False Discovery Rate (FDqV)[6] . This method use the Filtered Derivative (FD)[2;3]
as step 1 and a step 2 which use the False Discovery Rate [1] for elimination the false
alarms at the end of step 2 and keep only as possible all right change points. The power of
FDqV is provide in [6] for the criteria mean integrate square error (MISE) than Filtered
Derivative with p-value (FDpV)[5]. Here we use a data given by electricity of France
(EDF). It concerns wind turbines are implanted somewhere in France and we want to
detect the breaks of the wind speed over a period.

Keywords. Time series, Filtered Derivative, False Discovery Rate

1 Introduction

In the literature, it exists two change points : The off-line detection or change points
analysis and the on-line detection or sequential change points. Different methods for
change point detection such that the penalized least square error [8], the filtered derivative
[3], the filtered derivative with p-value [5] and the filtered derivative and false discovery
rate [6] are used in the literature. In this work, we give an real application the filtered
derivative and false discovery rate method. The rest of this paper is structured as followed
: Section 2 describes the filtered derivative and false discovery rate, section 3 gives an
real application of this method.
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2 Recall method for change point analysis: Filtered

Derivative and False Discovery Rate (FDqV)

Model

Let X= (X1, X2, . . . , Xn) a sequence of independent random variable indexed by the
time t= 1, 2, . . . , n. We suppose it exists a segmentation τ = (τ1, τ2, . . . , τK) with τk ∈
{1, 2, . . . , n} and τ1 < τ2 < . . . τK . K denotes the number of changes. By convention, for
the calculus of the mean, we set τo = 1 and τK+1 = n. In other words, for k = 0, . . . K
, for i =τk + 1, . . . τk+1, we have Xk ∼ N (µk, σk), where N (µ, σ) is a gaussian law with
mean µ and standard deviation σ.

The Filtered Derivative and False Discovery Rate (FDqV)

The FDqV method is introduced by [6] for a time series. In fact, The Filtered Derivative
with False Discovery Rate has two steps : The Filtered Derivative and the False Discovery
Rate

Step 1: The Filtered Derivative

Step 1 is based on Filtered Derivative and select a set of potential change points, More
precisely, we have

Computation of the filtered derivative function

Computation of the filtered derivative function, which is defined as the difference between
the estimators of the mean computed in two sliding windows respectively at the right and
at the left of the time t, both of size A, that is as the function:

FD(t, A) = µ̂(t+ 1, t+ A)− µ̂(t− A, t), for A < t < N − A (1)

where

µ̂(t+ 1, t+ A) := A−1
t+A∑

j=t+1

Xj

denote the empirical mean of the variables Xj on the box (t + 1, t + A). This method
consists in filtering data by computing the estimators of the parameter µ before applying
a discrete derivation. So this construction explains the name of the algorithm, so called
Filtered Derivative method [2;3]. Next, remark that quantities A × FD(t, A) can be
iteratively calculated by using

A× FD(t+ 1, A) = A× FD(t, A) +X(t+ 1 + A)− 2X(t+ 1) +X(t− A). (2)
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Thus, the computation of the whole function t 7−→ FD(t) for t ∈ [A, n − A] requires
O(n) operations and the storage of n real numbers. Let us point that the absolute value
of filtered derivative |FD| presents hats at the vicinity of the change points. Potential
change points τ ∗k , for k = 1, . . . , K∗, are selected as local maxima of the absolute value
of the filtered derivative |FD(t, A)| where moreover |FD(τ ∗k , A)| exceed a given threshold
C1. In [3;5], we have given the asymptotic distribution of the maximum |FD| under the
null hypothesis. Therefore, we can fix the error type at level p?1, and then we can deduce
the threshold C1 corresponding to Pr(max |FD(τk, A)| > C1) = p∗1. We can remark the
existence of many local maxima in the vicinity of each right change point (see [3;5]for
theoretical explanation). On the other hand, if there is no noise that is when σ = 0, we
get hats of width 2A and hight µk+1 − µk at each change point τk,.

For this reason, we select as first potential change point τ ∗k the global maximum of
the function |FDk(t, A)|, then we define the function FDk+1 by putting to 0 a vicinity of
width 2A of the point τ ∗k and we iterate this algorithm while |FDk(τ ∗k , A)| > C1, see [4;5].

Step 2: The False Discovery Rate

A potential change point τ ?k can be an estimator of a right change point or a false alarm.
We want to eliminate false detection in order to keep (as possible) only the right change
points. In [6], we use as Step 2 multiple hypothesis tests. More formally, consider K
hypothesis tests for all 1 ≤ k ≤ K, (H0,k) : µ̂k = µ̂k+1 versus (H1,k) : µ̂k 6= µ̂k+1

where µ̂k’s are defined as in the model. For each hypothesis test, we calculate the p-values
p?1, . . . , p

?
K? associated to each potential change point τ ?1 , . . . , τ

?
K? . After the calculation of

p-value, we use a Bonferroni type multiple testing procedure:

1. We tidy up p- value in the increasing order p∗(1) ≤ . . . ≤ p∗(K∗).

2. We choose a threshold q corresponding to the rate of false alarms or FDR.

3. We keep only the potential change points τ ∗i corresponding to a p-value p∗(i) such

that p∗(i) ≤
i

K∗ q.

For more details see [6].

Simulation

For n = 10, 000, we have simulated one replication of a sequence of Gaussian random vari-
ables (X1, . . . , Xn) with variance σ2 = 1 and mean µt = f(t) where f is a piecewise con-
stant function with seven change points at times τ = (2000, 2500, 3000, 4000, 7000, 8000, 9000)
with means µ = (2.5, 2, 3, 4.5, 3, 3.5, 4, 5.5). We have made the following choices: A = 250,
Kmax = 20, C1 = 0.25, and q = 10−6.

3



0 2000 4000 6000 8000 10000

−2
0

2
4

6
8

t

Y

Right signal  (K=7)

Signal estimation after Step1

Signal estimation after Step2

Signal estimation after Step2 by FDqV method with parameters A=100 and C_1=0.25

Figure 1: Signal reconstruction after Step2 by FDqV method

3 A real application of Filtered Derivative and False

Discovery Rate

In this paragraph, we want to apply the FDqV-method for a real application. The data
concerns the wind speed of the wind turbines. We have 50598 observations and we want
to detect abrupt changes of the wind speed over the time which corresponds when the
wind speed change. We take the parameters followings A=144, Kmax=20, C1 = 0.1 and
q = 10−6. The figure 2 corresponds the signal speed wind , the figure 3 give us when the
instant of potential changes are produced and the last figure is the reconstruction of the
signal by our method.

Remark

The quality of the signal estimation by the FDqV- method (as the filtered derivative and
the filtered derivative with p-value) depends strongly on the parameters optimization.
This work will be published in [7].
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Figure 2: The signal of wind speed
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Figure 3: The Filtered Derivative and Corrected Filtered Derivative

5



1 2 3 4 5 6

x 10
4

4

6

8

10

12

14

Times

Wi
nd

 sp
ee

d
Wind speed signal  estimation by Filtered Derivative and False Discovery Rate (FDqV)

 

 
Signal reconstruction after step2

Figure 4: Signal estimation by FDqV method
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