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Résumé.

Les potentiels évoqués cognitifs (ERPs) sont utilisés dans le domaine de la recherche en
psychologie pour décrire par électro-encéphalographie (EEG) l’évolution dans le temps de
l’activité cérébrale induite par des évocations. Sur les courts intervalles de temps au cours
desquels les variations d’ERPs peuvent être liées à des conditions expérimentales, le signal
psychologique est le plus souvent faible, au regard de la forte variablité inter-individuelle
des courbes d’EEG.

Groppe et al. (2011a, 2011b) proposent une revue des procédures de tests simultanés
pour les données haut-débit de potentiels. Toutefois, ils se limitent à la comparaison de
méthodes classiques mais ne mentionnent pas les problèmes liés à la forte dépendance
entre les statistiques de tests au cours du temps. Pourtant, il ressort d’articles récents
sur les tests multiples pour données à haut-débit (voir par exemple Efron, 2007) qu’une
forte corrélation entre les tests réduit considérablement la précision et la stabilité des
procédures.

Cette dépendance est ici fortement structurée dans le temps, avec une composante
autorégressive et une structure en blocs. Nous proposons une méthode basée sur la
modélisation jointe du signal et de la dépendance entre les statistiques de tests au cours
du temps, dans le but d’améliorer les procédures de tests multiples telles que celles de
Benjamini et Hochberg (1995), de Guthrie et Buchwald (1991), conçue pour l’analyse
de données d’ERP, et les plus récentes approches de décorrélation proposées par Leek et
Storey (SVA, voir Leek and Storey, 2008) et Sun et al. (2012).

Mots-clés. Dépendance, Données d’ERP, Grande dimension, Tests multiples.

Abstract.
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Event-related potentials (ERPs) are now widely collected in psychological research to
determine the time courses of mental events. In the significant analysis of the relationships
between event-related potentials and experimental covariates, the psychological signal is
often both rare, since it only occurs on short intervals and weak, regarding the huge
between-subject variability of ERP curves. Testing simultaneously for differences over
the entire digitized time intervals creates a serious multiple comparison problem in which
the probability of false positive errors must be controlled, while maintaining reasonable
power for correct detection.

A pair of papers published recently summarized current status on mass univariate
analysis of event-related brain potentials/fields (Groppe et al., 2011a, 2011b). These
authors focused on comparing a variety of the False Discovery Rate (FDR) controlling
procedures. Missing conspicuously from the two articles is any reference to the problem
of dependent tests generated by the strong temporal dependence in the ERPs. It is yet
now well known from the literature on large-scale significance analysis (Efron, 2007) that
highly correlated data can severely affect the accuracy of simultaneous testing.

In the present situation, dependence is obviously structured over time with both a
strong autocorrelation component and a block pattern. We propose a joint modeling of
the signal and time-dependence among test statistics to improve the properties of multi-
ple testing procedures, regarding standard methods such as the Benjamini and Hochberg
(1995) false discovery rate procedure, the Benjamini and Yekutieli (2001) procedure de-
signed for dependent test statistics, the Guthrie and Buchwald (1991) method for ERP
analysis and the more recent decorrelation approaches by Leek and Storey (SVA, see Leek
and Storey, 2008) and Sun et al. (2012).

Keywords. Dependence, ERP data, High-dimensional data, Multiple testing.

1 Introduction

High-throughput instrumental data such as Event-Related Potentials (ERPs) and func-
tional magnetic resonance imaging (fMRI) data have increasingly become common in
psychological research. The former provides high temporal resolution to chart the time
course of mental processes, whereas the latter implicates spatial areas in the brain that
might be responsible for experimental effects. With the routine collection of massive
amount of data from ERP or fMRI studies, researchers must face the challenge of mul-
tiple comparison corrections: in shifting, simultaneously, through thousands or tens of
thousands of comparisons for significant effects, a balance must be struck between keep-
ing a low false positive error rate while maintaining sufficient power for correct detection.
How to achieve this objective for data exhibiting arbitrarily strong temporal dependence
is the focus of this presentation.

A pair of papers published recently summarized current status on mass univariate anal-
ysis of event-related brain potentials/fields (Groppe et al., 2011a, 2011b). These authors
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focused on comparing a variety of the False Discovery Rate (FDR) control procedures
(Benjamini and Hochberg, 1995) and permutation tests (e.g., Blair and Karinski, 1993).
Instead of controlling for family-wise error rate, the FDR procedure controls for expected
proportion of incorrectly rejected null hypotheses (false discoveries) over the total num-
ber of rejections made. Permutation tests are nonparametric and within-subject data
structure is preserved. Missing conspicuously from the two articles is any reference to the
problem of dependent tests generated by the strong temporal dependence in the ERPs.
It is yet now well known from the literature on large-scale significance analysis (Efron,
2007) that highly correlated data can severely affect the accuracy of FDR estimation and
the stability of simultaneous testing (i.e., variances of discovery proportions). Ignoring
dependence among test statistics also reduces the detection of true positives (Leek and
Storey, 2008).

One approach is to model the dependence structure in the data by a hidden Markov
model (see Sun and Cai, 2009). Another more general approach is to account for the
multivariate dependence by some data reduction techniques involving latent variables
(see Leek and Storey, 2008 or more recently Sun et al., 2012). A notable example of the
latter approach in genomic data analysis is the powerful factor analysis multiple testing
procedure proposed by Friguet et al. (2009) under the assumption that the conditional
covariance of the responses given the treatment variables can be well approximated by its
factor components. The former method is adapted to a dynamic factor adjusted modeling
of ERPs arising from standard analysis of variance designs in Causeur et al. (2012).
Results of a simulation study showed that the new procedure performed well against
those standard multiple testing procedures: both in power gains and in stabilizing true
discoveries. We propose to extend the former method by a joint modelling of the signal
and the time-dependence structure among test statistics.

2 Settings for significance analysis of ERP data

For i = 1, . . . , n, let Yit denote the ith ERP measurement at time t, with t = 1, . . . , T ,
where T is the number of frames. The following multivariate linear model is assumed
as a general framework to study the relationship between the ERPs and covariates xi =
(xi1, . . . , xip)

′, eventually adjusted from the effect of other covariates zi = (zi1, . . . , zir):

Yit = µt + b′tzi + β′txi + εit, (1)

where µt is the intercept coefficient at time t, bt and βt are the r− and p−vectors of slope
coefficients relating the ERP at time t with z and x respectively and εit is the random
error term, normally distributed with mean 0 and standard deviation σt. Typically, in
basic multiple testing procedures, no time dependence is assumed among the residual
errors εit: for each subject i, the vector εi = (εi,1, εi,2, . . . , εi,T )′, where T is the number
of time frames, is then assumed to be normally and independently distributed with mean
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0 and variance Dσ = diag(σ2
1, σ

2
2, . . . , σ

2
T ), where diag(.) stands for the matrix operator

which transforms a T -vector into the T × T diagonal matrix which diagonal elements are
given by this vector. Hereafter, this assumption is relaxed to account for time-dependence:
Var(ε) = Σ = D

1/2
σ RD

1/2
σ , where R is a T × T residual correlation matrix.

For ERP data, the signal at each channel is usually both rare and weak: rare because
for most t, the null hypothesis H0,t : βt = 0 is true, and weak because, with respect
to the moderate number of subjects in a typical ERP experiment and the amount of
residual variability in ERP curves, the odds are often not in favor for successful detection
of time points for which H0,t is not true. According to the general linear model theory, the

selection of significant time points is based on the observed signal β̂ = (β̂1, β̂2, . . . , β̂T )′

obtained by ordinary least-squares estimation of model (1). For p = 1,

β̂ =
x′PzY

x′Pzx
,

where Pz = In − Z(Z ′Z)−1Z ′, Z is the n × (r + 1) matrix which ith row is (1, z′i), Y is
the n× T matrix which generic (i, t) element is Yit and x = (x1, . . . , xn) is the n−vector
collecting the measurements of the covariate x. The corresponding vector T of t−statistics
for the set of null hypotheses H0,t is given by the following expression:

T =
√
x′Pzx diag(σ̂)−1β̂, (2)

where diag(σ̂) is the T × T diagonal matrix which t-th diagonal element is the standard
degree-of-freedom corrected estimate σ̂t of model (1). Under the null hypothesis H0,t, each
component Tt of T is distributed according to a Student distribution with d = n−p−r−1
degrees of freedom. In the following, pt stands for the p-value associated to Tt.

FDR-controlling Multiple testing procedures

The collection of p-values (pt)t=1,...,T is generally the only input for multiple testing
procedures. Indeed, most methods consist in rejecting the null H0t if pt ≤ p∗, where the
threshold p∗ is chosen in order to guarantee that the corresponding number V of erroneous
rejections of the null is controlled.

Basically, these methods can first be divided into two families according to the overall
type-I error rate they wish to control: the so-called Family-Wise Error Rate (FWER)
defined as FWER = P(V ≥ 1), and the False Discovery Rate (FDR), defined as the
expected proportion of erroneous rejections of the null among the positive tests: FDR =
E(FDP), where the False Discovery Proportion FDP is 0 if the number R of rejections is
itself 0 and FDP = V/R if R > 0. The renewal of large-scale multiple testing induced
by this change of objective dates from Benjamini and Hochberg (1995), which introduces
the so-called Benjamini-Hochberg (BH) procedure: p∗ is here defined as the largest p(k),
where p(k) is the kth increasingly ordered p-value, such that p(k) ≤ kα/T . Under an
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assumption of independence among tests, Benjamini and Hochberg (1995) show that the
former thresholding method guarantees that FDR ≤ π0α ≤ α, where π0 is the unknown
proportion of true nulls. Among the many refinements of the seminal BH procedure, some
have focused on the control of the FDR by the BH procedure in situations where tests
are correlated (Benjamini and Yekutieli, 2001).

More recent papers investigate the negative impact of dependence on the accuracy
of multiple testing procedures, especially due to the instability of ranking. It shall be
noted that the former approaches do not consist in improvements of the thresholding
procedure but in modifications of the calculation of p-values. For example, in the context
of genomic data analysis, Leek and Storey (2008), Friguet et al. (2009) and Sun et al.
(2012) propose to model the dependence among tests using a latent factor model, which is
used to decorrelate the test statistics and consequently restore the consistency of p-values
ranking.

3 Time-dependence among test statistics

It is first important to note that, in the present multivariate linear context, the dependence
pattern of the t-statistics is directly inherited from the residual correlation R introduced
in model (1): under the family-wise null hypothesis H0 = ∩tH0,t, T is indeed distributed
according to a multivariate Student distribution with correlation R and d degrees of
freedom.

The method proposed by Guthrie and Buchwald (1991), hereafter referred to as the
GB procedure, is noticeably the first one addressing this dependence issue by assuming an
autoregression correlation structure of order 1 for the t-tests. In order to better account
for the complexity of the dependence pattern, we propose to model the residual correlation
of model (1) using a more flexible factor model.

It is now assumed that there exists q latent factors f = (f1, . . . , fq)
′, normally dis-

tributed with mean 0 and variance Iq, such that, conditionally on zi, xi and fi,

Yit = µt + b′tzi + β′txi + λ′tfi + eit, (3)

where λt is the q−vector of factor loadings for the ERP measurement at time t and
eit is the specific random error term, normally distributed with mean 0 and variance
ψ2
t . Moreover, it is assumed that the specific errors eit are mutually independent, which

induces the following decomposition of the residual variance matrix Σ:

Σ = Ψ + ΛΛ′, (4)

where Ψ = diag(ψ2
1, . . . , ψ

2
T ) and Λ is the T × q matrix which t−th row is λ′t.

In other words, the factors are introduced in the model in order to capture linearly the
time-dependence among residuals of model (1). The same model with different estimating
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strategies can be found in Leek and Storey (2008), Friguet et al. (2009) and Sun et al.
(2012) for multiple testing issues in high-dimension.

The talk will present an iterative estimation procedure which alternates the estimation
of the factor model parameters and the signal. We will show that it improves the stability
of error rates and the overall true discovery proportions.
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