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Résumé.
L’émergence des études d’association sur l’ensemble du génome (GWASs) dans le

domaine de la génétique humaine constitut un effort sans précédent pour découvrir de
nouveaux variants génétiques associés à des maladies et des traits complexes. Jusqu’à
présent, il y eu 1461 GWASs repertoriés dans la base de données HuGE et plus de 9900
postions génomiques identifiées. Pourtant, la majeure partie de la contribution génétique
sous-jacente à la plupart des maladies humaines communes reste pour l’essentiel inex-
pliquée et l’intérêt biologique de beaucoup de postions génomiques identifiées à partir
des GWASs n’ont pas été caractérisées. La recherche d’inéractions Gène-Gène (GxG)
et Gène-Environnement (GxE) dans le contexte des GWASs est une manière de mieux
exploiter les découvertes des GWASs en intégrant des facteurs de risque épidémiologiques
et d’autres gènes dans l’analyse. Malgré leur intérêt, ces analyses soulèvent de nombreux
défis méthodologiques qui ont débouché sur très peu de développements spécifiques. Dans
ce travail, notre but principal est de développer un cadre statistique général basé sur les
modèles graphiques Bayésiens pour la détection d’inéractions Gène-Gène (GxG) et Gène-
Environnement (GxE) dans les GWASs.

Mots-clés. Gène; Environnement; GWAS; Bayésien; Modèle Graphique;
Cancer du Sein.

Abstract.
The emergence of Genome-Wide Association Studies (GWASs) in the field of human

genetics is an unprecedented effort to discover new genetic variants associated with com-
plex human diseases and complex traits. To date, there have been 1,461 GWASs reported
in the HuGE database and more than 9,900 hits identified. Yet, the bulk of genetic con-
tribution underlying most common human diseases remains largely unexplained and the
biological relevance of many loci identified through GWASs have not been characterized.
The search for Gene by Gene (GxG) and Gene by Environment (GxE) interactions in the
context of GWAS is a way to leverage GWAS discoveries by integrating epidemiological
risk factors and other genes into the analysis. Despite their interest, these analyses raise
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many methodological challenges and has seen very limited specific developments. In this
work, our main purpose is to develop a general statistical framework based on Bayesian
graphical modeling for the detection of GxG and GxE interactions in GWASs.

Keywords. Gene; Environment; GWAS; Bayesian; Graphical Model; Breast Cancer.

1 Bayesian Graphical Model (BGM)

A graphical model is a family of probability distributions which are Markov with respect
to a given graph G. A discrete graphical model is a graphical model where the random
variables are discrete.

LetX be the random vector of interest. Suppose that a random sample x = (x1, . . . , xn)
of values of X has been observed. Let us assume that we choose to do a model search in
the family of models M1, . . . ,Mk. We write the models as

Mj = {p(x|ϑ), ϑ ∈ Θj}, j = 1, . . . , k (1)

where ϑ is a parameter in the parameter set Θj and p(x|ϑ) is a probability density func-
tion. In the particular case where the model is a graphical model, the parameter space
is defined by the underlying graph G and we identify models Mj with their underlying
graph Gj.

In a Bayesian framework we assume a prior probability P (Mj), j = 1, . . . , k on the set
of models (M1, . . . ,Mk) and a prior probability on the parameters ϑ, and want to derive
the posterior model probabilities P (Mj|x) for each one of the models M1, . . . ,Mk, that
is, the conditional distribution of Mj given the data.

The Bayesian solution is to choose the model with the highest posterior probability.
According to the Bayes’ theorem, the posterior probability for Mj is

P (Mj|x) =
P (x|Mj)P (Mj)∑k
i=1 P (x|Mi)P (Mi)

(2)

The term
∑k
i=1 P (x|Mi)P (Mi) in (2) is a constant. Therefore we can write

P (Mj|x) ∝ P (x|Mj)︸ ︷︷ ︸
(the Marginal Likelihood)

P (Mj)︸ ︷︷ ︸
(the Model Prior)

(3)

Suppose that the random vector of interest X consists of r binary factors {X1, . . . , Xr},
each having two levels: 0 and 1. Take N individuals, and classify them accordingly to
the r binary factors in V = {1, 2, . . . , r}, let E be the collection of all non empty subsets
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of V and E0 the collection of possible subsets of V including ∅, then the elements F in E0
are in 1-1 correspondence with the cells in the contingency table and we can use pF to
denote the cell probability

pF = P (Xv = 1, v ∈ F,Xv = 0, v 6∈ F ). (4)

Similarly, we can use nF , F ∈ E0 to denote the cell counts. We know that since N is fixed,
the cell counts follow a multinomial distribution with the following distribution function

f((n), p) =
(
N
(n)

)
p
N−
∑

F∈E nF

∅
∏
F∈E

pnF
F (5)

For a given contingency table, the transformation from the cell counts {nF} to the
marginal cell counts {yF} is a simple linear transformation with Jacobian equal to 1.
If we assume a multinomial distribution for the cell counts, we readily obtain, up to
a multiplicative constant, the following natural exponential family distribution for the
marginal cell counts y = (yE, E ∈ E0) as a natural exponential family:

f(y; θ,G) = exp
( ∑
D∈D

θDyD −N log(1 +
∑
E∈E

exp(
∑

D⊆GE

θD))
)

with θ = (θD, D ∈ D) (6)

The conjugate priors for distributions in the exponential family have density

πG(θ|s, α) = IG(s, α)−1 exp{
∑
D∈D

θDsD − α log
(
1 +

∑
E∈E

exp(
∑

D⊆GE

θD)
)
} , (7)

for some s = (sD, D ∈ D) ∈ <|D| and α ∈ <, where IG(s, α) is the normalizing constant.

2 Specification of the Prior

A method to construct hyperparameters of a proper prior πD(θD|(s, α)) is to start with
a fictive prior contingency table with all cell counts nF positive, not necessarily integers.
With α denoting the total count in the given fictive contingency table, yD denoting the
marginal cell counts, we can take as hyperparameters α = N and sD = yD, D ∈ D. Lack
of prior information can be expressed through what is sometimes called a flat prior by
taking all the fictive cell entries to be equal and equal to α

|I| . We used this latter prior
specification in our application to the breast cancer GWAS.
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3 Posterior of a Model

The posterior of G is proportional to the ratio of the two normalizing constants:

P (G | Y ) ∝ IG(y + s, n+ α)/IG(s, α). (8)

For G decomposable, the prior π(θ|α, s) is identical to the hyper Dirichlet (see Massam
et al., 2009). It therefore follows that the normalizing constants IG can be computed
analytically when the graph G is decomposable. When G is non decomposable, IG needs
to be computed numerically.

4 Regression Induced by a Graphical Model

In GWAS, we are interested in modelling the response variable (i.e. case control status)
as a function of the SNP variables. Let Y = Xr, r ∈ V be a response variable and XA,
A ⊂ V \{r} be a set of explanatory variables (i.e. the SNPs). Denote by (n)A∪{r} and (n)A
the corresponding marginal tables. Here (n), (n)A∪{r} and (n)A are cross-classifications
involving XV , XA∪{r} and XA, respectively. The connection between log-linear models
and the regressions derived from them has been explored in Dobra et al. (2010). They
showed that the marginal likelihood of the regression [Y |XA] can be expressed as the ratio
between the marginal likelihoods of the saturated log-linear models for (n)A∪{r} and (n)A.

5 SNP selection in GWAS Setting

Let R denote a set of possible regression models. We associate with each candidate model
r ∈ R a neighbourhood nbd(r) ⊂ R. Any two models r, r′ ∈ R are connected through a
path r = r1, r2, ..., rl = r′ such that rj ∈ nbd(rj−1) for j = 2, ..., l. The neighbourhood of
r = Y |XA is obtained by addition moves, deletion moves, and replacement moves. In an
addition move, we individually include in A any variable in V \A. In a deletion move, we
individually delete any variable that belongs to A. For a replacement move, we individ-
ually replace any one variable in A with any one variable in V \A. The first stage of the
MOSS procedure is as follows.

We make use of a current list of regressions S that is updated during the search. Define

S(c) =
{
r ∈ S : P (r) ≥ cmax

r′∈R
P (r′)

}
where c ∈ (0, 1). A regression r ∈ S is called explored if all of its neighbours r′ ∈ nbd(r)
have been visited.
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1. Initialize a starting list of regressions S. For each r ∈ S, calculate and record its
marginal likelihood P (r). Mark r as unexplored.

2. Let L be the set of unexplored regressions in S. Sample an r ∈ L according to
probabilities proportional with P (r) normalized within L. Mark r as unexplored.

3. For each r′ ∈ nbd(r), check if r′ is currently in S. If it is not, evaluate and record
its marginal likelihood P (r′). Eliminate the regressions S\S(c′) for some pre-chosen
value 0 < c′ < c.

4. With probability q eliminate from S the regressions in S\S(c).

5. If all the regressions in S are explored STOP. Otherwise return to step 2.

The role of the parameters c, c′, and q is to limit the number of regressions that need
to be visited to a manageable number. At the end of the first stage, we will have a set of
top regressions each involving a small number of variables. The first stage uses saturated
models and thus includes interactions between SNPs (Genes) and between SNPs and en-
vironmental factors.
The second stage is to search the space of BGMs to identify the most relevant interactions
among the variables in each of the top regressions. By using the generalized hyper Dirich-
let prior of Massam et al. (2009), the computations in both steps can be done efficiently.
Once a set of promising log-linear models has been found (at the end of stage two), model
averaging can be used to build a classifier for predicting the response. The efficacy of the
classifier can be assessed using k-fold cross validation.

6 APPLICATION

We used the CGEM breast cancer data. The genome-wide association studies (GWAS)
for breast cancer has been completed in the Nurses’ Health Study (NHS) with nearly
550,000 SNPs genotyped. The analysis includes 1,145 individuals who developed breast
cancer during the observational period and 1,142 age-matched individuals who did not
develop breast cancer during the same time period. Both the genotype data and the pre-
computed analyses based on the genotype data were retrieved from the following website
(http://cgems.cancer.gov/). The project team has developed easy access to pre-computed
results of the data including SNP frequencies and single SNP association analyses.

The BGM selected 12 SNPs with MAF varying between 0% and 42%. Three SNPs
have a MAF lower than 5%. In general, frequentist approaches applied to GWAS would
not be able to perform a test statistic for these SNPs. Interestingly, the BGM identifies
an interactions between two SNPs, one in the gene FRMD4A and one in the gene FGFR2.
The effects of these two SNPs are in opposite direction (β = −1.25).
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7 Discussion

Our real application of BGM to a breast cancer GWAS data set confirms the interest
of this approach and its relevance for genetic research. Many of the genetic associations
we found, especially the GxG interactions, would not have been found by conventional
approaches, which generally cannot evaluate multi-SNP models and rare variants.
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