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Résumé.
Ces dernières années, de nombreux travaux ont montré les bénéfices d’utiliser des tech-

niques de complétion de matrice pour améliorer les systèmes de recommandation (pour
la recommandation de films ou de musique notamment). La plupart des études faites ont
considéré le cas oú les coefficients à déterminer sont des scores continus. Dans ce travail
nous proposons d’étudier le cas où les observations sont de nature binaire. Plus précisé-
ment nous nous intéressons à la complétion de matrices dont les coefficients suivent une
distribution logistique avec une fonction de lien concave. Notre travail permet de traiter
des schémas d’échantillonage de coefficients variés, et l’estimateur que nous considérons
est basé sur une méthode de (log-)vraisemblance pénalisée par la norme nucléaire (en-
core appelée norme-trace). Plus précisément, nous proposons des bornes contrôlant la
divergence de Kullback-Leibler entre la vraie distribution matricielle et notre estimation.
En pratique, nous utilisons un algorithme de descente de gradient par coordonnées pour
permettre de construire notre estimateur dans un cadre de grande dimension.

Mots-clés. Complétion de matrice, statistique en grande dimension, faible rang, . . .

Abstract. In the past few years, a large variety of works has shown the benefits of
using matrix completion techniques to improve recommender system (e.g., for movie or
music recommendation). Most works have considered cases where the coefficients to be
determined are continuous scores. Here, we investigate the case where the observations are
binary. More precisely, we deal with the problem of matrix completion when the matrix
coefficients follow a logistic distribution with a known concave link function. We assume a
general sampling scheme for the acquisition process of the coefficients. We study the per-
formance of a nuclear-norm penalized estimator. More precisely we derive bounds for the
Kullback-Leibler divergence between the true and estimated distribution. In practice we
propose an algorithm based on coordinate gradient descent in order to tackle potentially
high dimensional settings.
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1 Introduction
The matrix completion problem arises in many practical situations and its study has

experienced exciting developments in the past few years. One of the well known applica-
tions of matrix completion are recommendation systems. For example, Pandora, a popular
online music service, lets you rate tracks as you listen. So we consider a matrix where rows
represent users, columns represent tracks and the users’ rates are the entries of the matrix.
Of course, each user may rate only a small part of the tracks. The question is whether it
is possible to infer all the missing rates from the known rates in order to "understand"
each user’s musical tastes ? The answer is yes if the unknown matrix has low rank.

There exists a rapidly growing literature on matrix completion problem (see, e.g., [2,
3, 5, 7, 6, 8]). In the usual matrix completion setting we observe real-valued entries. Ho-
wever, in some applications, such as recommendation systems we are only able to collect
positive or negative feedback. The binary output is generated according to a probability
distribution parametrized by the corresponding entry of the unknown matrix M . This
setting, known as 1-bit matrix completion, was introduced by Davenport et al. [4]. They
use a very popular nuclear norm minimization approach and show that the recovery is
still possible even if the observations are highly quantized. Davenport et al. consider the
uniform sampling model where entries are assumed to be sampled uniformly at random.
Unfortunately, this condition is not realistic in applications. If we take the example of
Pandora, some users are more active than others and some tracks are rated more fre-
quently. Another important point is that their methods requires an upper bound on the
nuclear norm or on the rank of the unknown matrix. Usually this kind of bounds is not
available.

In the paper by Cai and Zhou [1], 1-bit matrix completion was further considered
using a max-norm regularization term. The method of [1] allows more general non-uniform
samplings but still requires an upper bound on the max-norm of the unknown matrix M .
Such bounds are usually not available and getting an estimation of the max-norm of the
unknown (partially) observed matrix M is a challenging problem.

We propose a method based on the constrained nuclear norm minimization which
allows us to consider general sampling distribution and requires only an upper bound on
the maximum absolute value of the entries of M . This condition is very mild since such a
bound is often known in applications. For instance, if the entries of M are user’s ratings
it is the maximal rating. The previously cited papers on 1-bit matrix completion also
require this bound, in addition to the bounds on the nuclear or max norm.

1.1 Notations

We consider the Hilbert space Rm1×m2 with the standard scalar product 〈A|B〉 :=
tr(A>B). For a given matrix A ∈ Rm1×m2 we write ‖A‖∞ := maxi,j |Ai,j| and denote its

2



Schatten p-norm by

‖A‖σ,p :=

(
m1∧m2∑
i=1

σi(A)p

)1/p

,

where σi(A) are the singular values of A ordered in decreasing order and m1 ∧ m2 :=
min(m1,m2). The operator norm of A, is denoted for consistency by ‖A‖σ,∞ := σ1(A).
We denote by S1(A) ⊂ Rm1 (resp. S2(A) ⊂ Rm2) the linear spans generated by left
(resp. right) singular vectors of A. PS⊥1 (A) (resp. PS⊥2 (A)) denote the orthogonal projections
on S⊥1 (A) (resp. S⊥2 (A)). We then define the following orthogonal projections on Rm1×m2

P⊥A : B → PS⊥1 (A)BPS⊥2 (A) and PAB → B − P⊥A(B) .

If we consider two matrices P,Q ∈ [0, 1]m1×m2 , the square Hellinger distance between P
and Q is defined as

d2H(P,Q) :=
1

m1m2

∑
1≤i≤m1
1≤j≤m2

[
(
√
Pi,j −

√
Qi,j)

2 + (
√

1− Pi,j −
√

1−Qi,j)
2
]
,

and the Kullback-Liebler divergence is

KL(P,Q) :=
1

m1m2

∑
1≤i≤m1
1≤j≤m2

[
Pi,j log

Pi,j
Qi,j

+ (1− Pi,j) log
1− Pi,j
1−Qi,j

]
.

1.2 Model Specification

We consider a parameter matrix X∗ ∈ Rm1×m2 which is not directly observed. For an
i.i.d. sequence (ωi)1≤i≤n of indexes over [m1] × [m2], we observe n independent random
elements (Yi)1≤i≤n ∈ {−1, 1}n which are distributed as :

P(Yi = 1) = f(X∗ωi
) and P(Yi = −1) = 1− f(X∗ωi

) ,

where f is a link function taking value in [0, 1]. For ease of notation, we write X∗i instead
of X∗ωi

. The log-likelihood of the observations X → LY(X) is given by :

LY(X) =
n∑
i=1

[
1{Yi=1} log(f(Xi)) + 1{Yi=−1} log(1− f(Xi))

]
.

If we define the matrices Ek,l as the canonical basis in Rm1×m2 then Xi = 〈X|Ewi
〉. With

the abuse of notation Ei := Ewi
, the log-likelihood may be expressed as :

LY(X) =
n∑
i=1

[
1{Yi=1} log (f(〈X|Ei〉)) + 1{Yi=−1} log (1− f(〈X|Ei〉))

]
.
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Note that by assumption, the matrices Ei for i = 1, . . . , n, are supposed to be i.i.d. on
E , the set of canonical matrices E := {Ek,l : (k, l) ∈ [m1] × [m2]}. Their distribution is
denoted by Π.
We also assume that we know a bound on the coefficients of X∗.
Assumption 1. We know γ > 0 such that ‖X∗‖∞ ≤ γ.

The estimator we study is defined as follows :

X̂ = arg min
X∈Rm1×m2

‖X‖∞≤γ

Φλ
Y (X) , (1)

where

Φλ
Y (X) = − 1

n

n∑
i=1

(
1{Yi=1} log (f(〈X|Ei〉)) + 1{Yi=−1} log (1− f(〈X|Ei〉))

)
+ λ‖X‖σ,1 ,

with λ > 0 a regularization parameter.

2 Main results
In this section we present two results controlling the estimation error of X̂. Before doing

so, let us introduce some additional notations and assumptions. For a given parameter
matrix X ∈ Rm1×m2 the score function, defined as the gradient of the log-likelihood, is
ΣY (X) = −∇LY(X) /n. For the true parameter matrix X∗ we also define Σ∗ := ΣY (X∗).
We also need the following constants depending on the link function f

Mγ = sup
|x|≤γ

2| log(f(x))| ,

Lγ = max

(
sup
|x|≤γ

|f ′(x)|
f(x)

, sup
|x|≤γ

|f ′(x)|
1− f(x)

)
,

Kγ = inf
|x|≤γ

f ′(x)2

8f(x)(1− f(x))
.

In our framework, we consider a general distribution Π for the random matrices (Ei)1≤i≤n.
However, we need to control “how far” Π is from the uniform distribution. Denoting

πk,l := Π(E1 = Ek,l) , (2)

we make the following assumption.
Assumption 2. There exists a constant µ > 0 such that for all indexes (k, l) ∈ [m1]×[m2]

πk,l ≥
1

µm1m2

.
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Let Cl =
∑m2

k=1 πk,l and Rk =
∑m1

l=1 πk,l.

Assumption 3. There exists a constant L > 0 such that

max
k,l

(Rk, Cl) ≤
ν

m1 ∧m2

,

We can now state the result.

Theorem 1. Suppose that Assumption 1, Assumption 2 and Assumption 3 hold and that
n ≥ 2 log(d)/(9ν). For

λ = 6Lγ

√
2ν log(d)

mn
and β = 8eMγ

√
log(d)

n
,

we have with least probability 1− 3/d :

KL
(
f(X∗), f(X̂)

)
≤ max

(
c∗r∗νµ2L2

γ

log(d)

mn
, µβ

)
,

where c∗ is a universal constant and r∗ := (2m1m2 rank(X∗))/Kγ.
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