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Résumé. Dans ce travail nous proposons une méthode bayésienne pour l’inférence
sur la dimension intrinsèque d’un nuage de points échantillonnés à partir d’une structure
de dimension faible, plongée dans un espace de grande dimension. L’ingrédient essentiel
de notre “recette” bayésienne est une vraisemblance marginale composite construite sous
l’hypothèse d’indépendance, comme suggérée par MacKay et Ghahramani (2005), afin
d’améliorer une proposition antérieure qui utilise des approximations locales basées sur le
processus de Poisson (Levina et Bickel, 2005). Pour obtenir une distribution “a posteriori”
avec un comportement et une courbure asymptotiques approximativement correctes, nous
calibrons cette pseudovraisemblance comme dans Pauli et al. (2001) et ensuite, à partir
d’exemples réels et simulés, nous comparons une méthode MCMC standard avec une
variante de la méthode bayésienne de référence décrit dans Ventura et al. (2013).

Mots-clés. Dimension intrinsèque, Vraisemblance non–calculable, Vraisemblance
composite marginale, Inférence de Bayes.

Abstract. In this work we propose a new Bayesian method for inference on the intrin-
sic dimension of point–cloud data sampled from a low–dimensional structure embedded
in a high–dimensional ambient space. The basic ingredient of our Bayesian recipe is a
composite marginal likelihood built under independence assumptions, that was suggested
by MacKay and Ghahramani (2005) to improve on an earlier proposal based on local
Poisson process approximations (Levina and Bickel, 2005). In order to get a posterior
with approximately correct asymptotic behavior and curvature, we calibrate this pseu-
dolikelihood as in Pauli et al. (2011). In simulated and real examples we compare a
standard MCMC method against a variation of the default Bayesian technique described
in Ventura et al. (2013).

Keywords. Intrinsic dimension, Intractable likelihood, Composite marginal likeli-
hood, Bayesian inference.

1 Introduction

The need for analyzing massive high–dimensional datasets is widespread nowadays and
has spawned a flurry of research papers that tackle the problem from different statistical
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perspectives ranging from the more theoretical to the more applied corners of the dis-
cipline. In spite of this abundance, though, there is always a single crucial assumption,
essentially shared by all these techniques, that make them work; that is, the data are not
genuinely high–dimensional but, in a way or another, can be squeezed back to a lower di-
mension, their intrinsic dimension, without losing any relevant portion of information. In
computer vision and image processing, for example, the intrinsic dimension of a sequence
of n pictures taken at a typical resolution of 720 × 480, say, may represent the (small)
number of degrees of freedom needed to capture the dynamic features hidden in these
D = 345, 600 dimensional signals, such as different exposure levels or roto-translations
of single elements. From these basic facts, it becomes almost self-evident how important
practically is to get a reliable estimate of this fundamental descriptor of a dataset.

In this work we propose a Bayesian method for inference on the intrinsic dimension
having as basic ingredient a composite marginal likelihood of independence suggested by
MacKay and Ghahramani (2005) to improve on an earlier proposal detailed in Levina
and Bickel (2005). In order to get a posterior with approximately correct asymptotic
behavior and curvature, we calibrate this pseudolikelihood as in Pauli et al. (2011), and
then compare the performance of a standard MCMC method against a variation of the
default Bayesian framework described in Ventura et al. (2013).

2 Background

In this section we will briefly review some of the likelihood–based approaches to estimate
the intrinsic dimension already available in the literature and more strictly related to our
developments. As in Levina and Bickel (2005), let Xn =

{
Xi ∈ RD

}n
i=1

be a set of i.i.d.
observations that represent a sufficiently smooth embedding of a lower–dimensional sample
Yn =

{
Yi ∈ Rd

}n
i=1

drawn from an unknown smooth density f(·) = fY (·) supported on

Rd with d << D. Then, if Rk(x) denotes the Euclidean distance from a fixed point x
to its k-th nearest–neighborhood (NN) in the sample Xn, from the smoothness of the
embedding we can see that the proportion k/n of points that fall into a ball of radius
Rk(x) around x satisfies the following

k

n
≈ f(x)V (d)

[
Rk(x)

]d
,

where V (d) is the volume of the unit sphere in Rd. With this basic fact at hand, we
can proceed by considering the (inhomogeneous) point process N(R,x) which counts
the number of Xn–samples falling into a small D–dimensional sphere BR(x) of radius R
centered around x. This is a binomial process that under appropriate conditions can be
approximated by a suitable Poisson process. Hence, finally, if we assume f(x) ≈ const
inside a small enough sphere BR(x), the rate λ of N(R,x) can be written as

λ(R,x) = f(x)V (d) dRd−1,

2



and the associated local log–likelihood takes the form (Snyder and Miller, 1991)

L
(
d(x), θ(x)

)
=

∫ R

0

log λ(r,x)dN(r,x)−
∫ R

0

log λ(r,x)dr,

where θ(x) = log f(x). This is an exponential family whose MLEs solve the following
likelihood equations{

∂L
∂θ

= N(R,x)− eθ V (d)Rd = 0
∂L
∂d

=
(

1
d

+ V ′(d)
V (d)

)
N(R,x) +

∫ R
0

log r dN(r,x)− eθ V (d)Rd
(

logR + V ′(d)
V (d)

)
= 0

,

and are equal to  d̂(x) =
[

1
N(R,x)

∑N(R,x)
j=1 log R

Rj(x)

]−1

f̂(x) = N(R,x)

V ( bd(x))R bd(x)

.

The problem now is to combine the local estimates d̂(xi) obtained in the neighborhood of
each of the n datapoints into a single estimator of the overall intrinsic dimension d. The
original proposal by Levina and Bickel was simply to average these n estimators, but this
solution showed a surprisingly strong bias at small radius R that MacKay and Ghahramani
(2005) fixed just by considering a composite likelihood built under the working assumption
of independence, which gives the following new set of estimates d̃ =

[
1P

i N(R,xi)

∑n
i=1

∑N(R,xi)
j=1 log R

Rj(xi)

]−1

,

f̃(xi) = N(R,xi)

V ( ed)R ed , ∀ i ∈ {1, . . . , n}.

These early developments have been followed by a number of variations and extensions
(e.g. Haro et al., 2006, 2007, 2008) but, to the best of our knowledge, no Bayesian
procedure is available at this time to directly estimate the intrinsic dimension of data,
although such an estimate may actually arise as a byproduct of approaches with broader
modeling scopes. For example, since a compact d–dimensional Riemannian manifold can
always be covered by a finite number of d–dimensional balls, Chen et al. (2010) adopt a
Bayesian nonparametric framework to fit a particular mixture of Gaussians to the data.
In this model, each cluster in the mixture may have a different dimensionality – with the
overall intrinsic dimension estimated as the average intrinsic dimension of the clusters
– and the algorithm seeks to minimize both the number of clusters and their intrinsic
dimension by adjusting the relevant posterior log–probabilities.

3 Our proposal

When the full likelihood function is too difficult to handle analytically because of com-
plex dependencies, but, as in the present case, it is possible to compute the likelihood
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function for some subsets of the data, it may be useful and effective to resort to a class
of approximate likelihoods called composite likelihoods (Varin et al., 2011). In general a
composite likelihood CL(ψ) is defined as CL(ψ) =

∏
i f(y ∈ Ai;ψ)wi where {wi}i are

positive weights and {Ai}i are all measurable events in the sample space. CL(ψ) can
essentially be interpreted as a proper likelihood but for a misspecified model. For this
reason, a composite likelihood do not satisfy the so called information identity, and this
typically implies that it is wrongly too concentrated. As a result, before we can crunch
a composite likelihood CL(ψ) into some sort Bayesian machinery, we necessarily need to
adjust it tweaking the weights {wi}i in order to get (approximately) the right asymptotic
behavior. To this end, here we calibrate MacKay and Ghahramani’s pseudolikelihood as
suggested in Pauli et al. (2013) – see also Pace et al. (2011) – to obtain a final composite
likelihood defined as follow

CL(ψ) = CL(d,θ) =
n∏
i=1

L
(
d, θ(xi)

)1/λ̄

where λ̄ = (1/p)
∑p

j=1 λj(ψ̂), p = dim(ψ), ψ̂ is the maximum composite likelihood es-

timator, {λj(ψ)}j are the eigenvalues of I(ψ)−1 J(ψ), I(ψ) = E
(
−∇u(ψ; Xn)

)
is the

expected (Fisher) information matrix, J(ψ) = Var
(
u(ψ; Xn)

)
the variability matrix and

u(ψ) = ∇ logCL(d,θ) denotes the score function associated to CL(ψ). Then, once we
choose a suitable prior density π(d,θ), we may formally get a genuine posterior as

πCL(d,θ |xn) ∝ π(d,θ)CL(d,θ).

In practice this approach would require not only the use of possibly complex MCMC
schemes to explore the posterior density, but also the specification of a prior distribution
over the whole high dimensional nuisance parameter θ = log f =

[
log f(x1), . . . , log f(xn)

]T
.

As a workaround to these familiar Bayesian quirks, we also consider the default Bayesian
analysis of Ventura et al. (2009, 2013).
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